Ad
related to: bivector examples physics practice worksheet kutastudy.com has been visited by 100K+ users in the past month
Search results
Results From The WOW.Com Content Network
Parallel plane segments with the same orientation and area corresponding to the same bivector a ∧ b. [1] In mathematics, a bivector or 2-vector is a quantity in exterior algebra or geometric algebra that extends the idea of scalars and vectors. Considering a scalar as a degree-zero quantity and a vector as a degree-one quantity, a bivector is ...
A -reflection (,,) can be written as = where (,,) is a bivector, and thus permits a factorization = =. The invariant decomposition therefore gives a closed form formula for exponentials, since each squares to a scalar and thus follows Euler's formula:
A 2-blade is a simple bivector. Sums of 2-blades are also bivectors, but not always simple. A 2-blade may be expressed as the wedge product of two vectors a and b: . A 3-blade is a simple trivector, that is, it may be expressed as the wedge product of three vectors a, b, and c:
the bivector has two distinct principal null directions; in this case, the bivector is called non-null. Furthermore, for any non-null bivector, the two eigenvalues associated with the two distinct principal null directions have the same magnitude but opposite sign, λ = ±ν, so we have three subclasses of non-null bivectors: spacelike: ν = 0
Examples of geometric algebras applied in physics include the spacetime algebra (and the less common algebra of physical space). Geometric calculus , an extension of GA that incorporates differentiation and integration , can be used to formulate other theories such as complex analysis and differential geometry , e.g. by using the Clifford ...
Given a bivector r = r 1 + hr 2, the ellipse for which r 1 and r 2 are a pair of conjugate semi-diameters is called the directional ellipse of the bivector r. [4]: 436 In the standard linear representation of biquaternions as 2 × 2 complex matrices acting on the complex plane with basis {1, h},
The simple rotation in the zw-plane by an angle θ has bivector e 34 θ, a simple bivector. The double rotation by α and β in the xy-plane and zw-planes has bivector e 12 α + e 34 β, the sum of two simple bivectors e 12 α and e 34 β which are parallel to the two planes of rotation and have magnitudes equal to the angles of rotation.
A bivector is an element of the antisymmetric tensor product of a tangent space with itself. In geometric algebra , also, a bivector is a grade 2 element (a 2-vector) resulting from the wedge product of two vectors, and so it is geometrically an oriented area , in the same way a vector is an oriented line segment.