Search results
Results From The WOW.Com Content Network
The two-dimensional "spin 1/2" representation of the Lie algebra so(3), for example, does not correspond to an ordinary (single-valued) representation of the group SO(3). (This fact is the origin of statements to the effect that "if you rotate the wave function of an electron by 360 degrees, you get the negative of the original wave function.")
In representation theory, the category of representations of some algebraic structure A has the representations of A as objects and equivariant maps as morphisms between them. . One of the basic thrusts of representation theory is to understand the conditions under which this category is semisimple; i.e., whether an object decomposes into simple objects (see Maschke's theorem for the case of ...
Jerome Seymour Bruner (October 1, 1915 – June 5, 2016) was an American psychologist who made significant contributions to human cognitive psychology and cognitive learning theory in educational psychology. Bruner was a senior research fellow at the New York University School of Law. [3]
There are two main descriptions of motion: dynamics and kinematics.Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term dynamics refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler–Lagrange equations), and sometimes to the solutions to those equations.
The linear motion can be of two types: uniform linear motion, with constant velocity (zero acceleration); and non-uniform linear motion, with variable velocity (non-zero acceleration). The motion of a particle (a point-like object) along a line can be described by its position x {\displaystyle x} , which varies with t {\displaystyle t} (time).
Newton's laws are often stated in terms of point or particle masses, that is, bodies whose volume is negligible. This is a reasonable approximation for real bodies when the motion of internal parts can be neglected, and when the separation between bodies is much larger than the size of each.
Any possible choice of parts will yield a valid interaction picture; but in order for the interaction picture to be useful in simplifying the analysis of a problem, the parts will typically be chosen so that H 0,S is well understood and exactly solvable, while H 1,S contains some harder-to-analyze perturbation to this system.
In physics, a number of noted theories of the motion of objects have developed. Among the best known are: Classical mechanics. Newton's laws of motion; Euler's laws of motion; Cauchy's equations of motion; Kepler's laws of planetary motion ; General relativity; Special relativity; Quantum mechanics