When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Arrhenius equation - Wikipedia

    en.wikipedia.org/wiki/Arrhenius_equation

    In physical chemistry, the Arrhenius equation is a formula for the temperature dependence of reaction rates.The equation was proposed by Svante Arrhenius in 1889, based on the work of Dutch chemist Jacobus Henricus van 't Hoff who had noted in 1884 that the Van 't Hoff equation for the temperature dependence of equilibrium constants suggests such a formula for the rates of both forward and ...

  3. Equilibrium chemistry - Wikipedia

    en.wikipedia.org/wiki/Equilibrium_chemistry

    Chemical equilibrium is a dynamic state in which forward and backward reactions proceed at such rates that the macroscopic composition of the mixture is constant. Thus, equilibrium sign ⇌ symbolizes the fact that reactions occur in both forward ⇀ {\displaystyle \rightharpoonup } and backward ↽ {\displaystyle \leftharpoondown } directions.

  4. Chemical equilibrium - Wikipedia

    en.wikipedia.org/wiki/Chemical_equilibrium

    Equality of forward and backward reaction rates, however, is a necessary condition for chemical equilibrium, though it is not sufficient to explain why equilibrium occurs. Despite the limitations of this derivation, the equilibrium constant for a reaction is indeed a constant, independent of the activities of the various species involved ...

  5. Law of mass action - Wikipedia

    en.wikipedia.org/wiki/Law_of_mass_action

    Guldberg and Waage also recognized that chemical equilibrium is a dynamic process in which rates of reaction for the forward and backward reactions must be equal at chemical equilibrium. In order to derive the expression of the equilibrium constant appealing to kinetics, the expression of the rate equation must be used.

  6. Chemical reaction - Wikipedia

    en.wikipedia.org/wiki/Chemical_reaction

    The forward and reverse reactions are competing with each other and differ in reaction rates. These rates depend on the concentration and therefore change with the time of the reaction: the reverse rate gradually increases and becomes equal to the rate of the forward reaction, establishing the so-called chemical equilibrium.

  7. Reversible reaction - Wikipedia

    en.wikipedia.org/wiki/Reversible_reaction

    The magnitude of the equilibrium constant depends on the Gibbs free energy change for the reaction. [2] So, when the free energy change is large (more than about 30 kJ mol −1), the equilibrium constant is large (log K > 3) and the concentrations of the reactants at equilibrium are very small. Such a reaction is sometimes considered to be an ...

  8. AOL Mail

    mail.aol.com

    Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!

  9. Kolmogorov backward equations (diffusion) - Wikipedia

    en.wikipedia.org/wiki/Kolmogorov_backward...

    Informally, the Kolmogorov forward equation addresses the following problem. We have information about the state x of the system at time t (namely a probability distribution p t ( x ) {\displaystyle p_{t}(x)} ); we want to know the probability distribution of the state at a later time s > t {\displaystyle s>t} .