When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Nearest neighbor search - Wikipedia

    en.wikipedia.org/wiki/Nearest_neighbor_search

    Nearest neighbor search (NNS), as a form of proximity search, is the optimization problem of finding the point in a given set that is closest (or most similar) to a given point. Closeness is typically expressed in terms of a dissimilarity function: the less similar the objects, the larger the function values.

  3. (1+ε)-approximate nearest neighbor search - Wikipedia

    en.wikipedia.org/wiki/(1+ε)-approximate_nearest...

    A solution to the (1+ ε)-approximate nearest neighbor search is a point or multiple points within distance (1+ ε) R from a query point, where R is the distance between the query point and its true nearest neighbor. [1] Reasons to approximate nearest neighbor search include the space and time costs of exact solutions in high-dimensional spaces ...

  4. Hierarchical navigable small world - Wikipedia

    en.wikipedia.org/wiki/Hierarchical_navigable...

    The Hierarchical navigable small world (HNSW) algorithm is a graph-based approximate nearest neighbor search technique used in many vector databases. [1] [2] Nearest neighbor search without an index involves computing the distance from the query to each point in the database, which for large datasets is computationally prohibitive.

  5. Best bin first - Wikipedia

    en.wikipedia.org/wiki/Best_bin_first

    Best bin first is a search algorithm that is designed to efficiently find an approximate solution to the nearest neighbor search problem in very-high-dimensional spaces. The algorithm is based on a variant of the kd-tree search algorithm which makes indexing higher-dimensional spaces possible. Best bin first is an approximate algorithm which ...

  6. Locality-sensitive hashing - Wikipedia

    en.wikipedia.org/wiki/Locality-sensitive_hashing

    In computer science, locality-sensitive hashing (LSH) is a fuzzy hashing technique that hashes similar input items into the same "buckets" with high probability. [1] ( The number of buckets is much smaller than the universe of possible input items.) [1] Since similar items end up in the same buckets, this technique can be used for data clustering and nearest neighbor search.

  7. How to deal with neighbors that encroach on your property - AOL

    www.aol.com/news/2008-10-15-how-to-deal-with...

    Perhaps the first owner of your house granted your neighbor access to a dock on your property in perpetuity, or the city has retained an easement to access power lines that run across the back ...

  8. k-nearest neighbors algorithm - Wikipedia

    en.wikipedia.org/wiki/K-nearest_neighbors_algorithm

    Using an approximate nearest neighbor search algorithm makes k-NN computationally tractable even for large data sets. Many nearest neighbor search algorithms have been proposed over the years; these generally seek to reduce the number of distance evaluations actually performed. k-NN has some strong consistency results.

  9. Nearest neighbour distribution - Wikipedia

    en.wikipedia.org/wiki/Nearest_neighbour_distribution

    In probability and statistics, a nearest neighbor function, nearest neighbor distance distribution, [1] nearest-neighbor distribution function [2] or nearest neighbor distribution [3] is a mathematical function that is defined in relation to mathematical objects known as point processes, which are often used as mathematical models of physical phenomena representable as randomly positioned ...