Search results
Results From The WOW.Com Content Network
A probabilistic age prior analysis give a current mass of 16.5–19 M ☉ and an initial mass of 18–21 M ☉. [11] Betelgeuse's mass can also be estimated based on its position on the color‑magnitude‑diagram (CMD). Betelgeuse's color may have changed from yellow (or possibly orange; i.e. a yellow supergiant) to red in the last few ...
By the end of their lives red supergiants may have lost a substantial fraction of their initial mass. The more massive supergiants lose mass much more rapidly and all red supergiants appear to reach a similar mass of the order of 10 M ☉ by the time their cores collapse. The exact value depends on the initial chemical makeup of the star and ...
A red giant is a luminous giant star of low or intermediate mass (roughly 0.3–8 solar masses (M ☉)) in a late phase of stellar evolution. The outer atmosphere is inflated and tenuous, making the radius large and the surface temperature around 5,000 K [K] (4,700 °C; 8,500 °F) or lower.
A much smaller grouping consists of very low-luminosity G-type supergiants, intermediate mass stars burning helium in their cores before reaching the asymptotic giant branch. A distinct grouping is made up of high-luminosity supergiants at early B (B0-2) and very late O (O9.5), more common even than main sequence stars of those spectral types ...
Betelgeuse is one of the best-known stars in the night sky, as well as the easiest to find. New examinations of this behemoth star suggest it is both smaller — and closer — than astronomers ...
The tonne (t) is an SI-compatible unit of mass equal to a megagram (Mg), or 10 3 kg. The unit is in common use for masses above about 10 3 kg and is often used with SI prefixes. For example, a gigagram ( Gg ) or 10 9 g is 10 3 tonnes, commonly called a kilotonne .
For example, Betelgeuse has the K-band apparent magnitude of −4.05. [5] Some stars, like Betelgeuse and Antares, are variable stars, changing their magnitude over days, months or years. In the table, the range of variation is indicated with the symbol "var". Single magnitude values quoted for variable stars come from a variety of sources.
In optical astronomy, the air mass provides an indication of the deterioration of the observed image, not only as regards direct effects of spectral absorption, scattering and reduced brightness, but also an aggregation of visual aberrations, e.g. resulting from atmospheric turbulence, collectively referred to as the quality of the "seeing". [8]