Search results
Results From The WOW.Com Content Network
Electrostatic spray ionization (ESTASI) is an ambient ionization method for mass spectrometry (MS) analysis of samples located on a flat or porous surface, or inside a microchannel. It was developed in 2011 by Professor Hubert H. Girault ’s group at the École Polytechnique Fédérale de Lausanne (EPFL) in Switzerland. [ 1 ]
The Poisson–Boltzmann equation can be applied to biomolecular systems. One example is the binding of electrolytes to biomolecules in a solution. This process is dependent upon the electrostatic field generated by the molecule, the electrostatic potential on the surface of the molecule, as well as the electrostatic free energy. [13]
Electrostatic spray ionization (ESTASI) involved the analysis of samples located on a flat or porous surface, or inside a microchannel. A droplet containing analytes is deposited on a sample area, to which a pulsed high voltage to is applied. When the electrostatic pressure is larger than the surface tension, droplets and ions are sprayed.
The hybrid model is a combination of fluid and kinetic models, treating some components of the system as a fluid, and others kinetically. The hybrid model is sometimes applied in space physics, when the simulation domain exceeds thousands of ion gyroradius scales, making it
The Born equation can be used for estimating the electrostatic component of Gibbs free energy of solvation of an ion. It is an electrostatic model that treats the solvent as a continuous dielectric medium (it is thus one member of a class of methods known as continuum solvation methods). It was derived by Max Born. [1] [2]
Using a simple solvation model that considered only pure electrostatic interactions between ions or dipolar molecules and solvents in initial and transition states, all nucleophilic and elimination reactions were organized into different charge types (neutral, positively charged, or negatively charged). [6]
[24] This process leads to the buildup of an electric surface charge, expressed usually in C/m 2. This surface charge creates an electrostatic field that then affects the ions in the bulk of the liquid. This electrostatic field, in combination with the thermal motion of the ions, creates a counter charge, and thus screens the electric surface ...
Ionic bonding is a type of chemical bonding that involves the electrostatic attraction between oppositely charged ions, or between two atoms with sharply different electronegativities, [1] and is the primary interaction occurring in ionic compounds.