When.com Web Search

  1. Ad

    related to: grade 10 vectors questions and answers english pdf book youtube kids

Search results

  1. Results From The WOW.Com Content Network
  2. Blade (geometry) - Wikipedia

    en.wikipedia.org/wiki/Blade_(geometry)

    In the study of geometric algebras, a k-blade or a simple k-vector is a generalization of the concept of scalars and vectors to include simple bivectors, trivectors, etc. Specifically, a k-blade is a k-vector that can be expressed as the exterior product (informally wedge product) of 1-vectors, and is of grade k. In detail: [1] A 0-blade is a ...

  3. Vector algebra relations - Wikipedia

    en.wikipedia.org/wiki/Vector_algebra_relations

    The following are important identities in vector algebra.Identities that only involve the magnitude of a vector ‖ ‖ and the dot product (scalar product) of two vectors A·B, apply to vectors in any dimension, while identities that use the cross product (vector product) A×B only apply in three dimensions, since the cross product is only defined there.

  4. Geometric algebra - Wikipedia

    en.wikipedia.org/wiki/Geometric_algebra

    Alternatively, ⁠ ⁠-vectors are called pseudoscalars, ⁠ ⁠-vectors are called pseudovectors, etc. Many of the elements of the algebra are not graded by this scheme since they are sums of elements of differing grade. Such elements are said to be of mixed grade. The grading of multivectors is independent of the basis chosen originally.

  5. Vector (mathematics and physics) - Wikipedia

    en.wikipedia.org/wiki/Vector_(mathematics_and...

    In the natural sciences, a vector quantity (also known as a vector physical quantity, physical vector, or simply vector) is a vector-valued physical quantity. [9] [10] It is typically formulated as the product of a unit of measurement and a vector numerical value (), often a Euclidean vector with magnitude and direction.

  6. Comparison of vector algebra and geometric algebra - Wikipedia

    en.wikipedia.org/wiki/Comparison_of_vector...

    Relevant is the distinction between polar and axial vectors in vector algebra, which is natural in geometric algebra as the distinction between vectors and bivectors (elements of grade two). The I {\displaystyle I} here is a unit pseudoscalar of Euclidean 3-space, which establishes a duality between the vectors and the bivectors, and is named ...

  7. Vector calculus identities - Wikipedia

    en.wikipedia.org/wiki/Vector_calculus_identities

    As the name implies, the divergence is a (local) measure of the degree to which vectors in the field diverge. The divergence of a tensor field T {\displaystyle \mathbf {T} } of non-zero order k is written as div ⁡ ( T ) = ∇ ⋅ T {\displaystyle \operatorname {div} (\mathbf {T} )=\nabla \cdot \mathbf {T} } , a contraction of a tensor field ...

  8. Vector notation - Wikipedia

    en.wikipedia.org/wiki/Vector_notation

    In mathematics and physics, vector notation is a commonly used notation for representing vectors, [1] [2] which may be Euclidean vectors, or more generally, members of a vector space. For denoting a vector, the common typographic convention is lower case, upright boldface type, as in v .

  9. Magnitude (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Magnitude_(mathematics)

    By definition, all Euclidean vectors have a magnitude (see above). However, a vector in an abstract vector space does not possess a magnitude. A vector space endowed with a norm, such as the Euclidean space, is called a normed vector space. [8] The norm of a vector v in a normed vector space can be considered to be the magnitude of v.