Ad
related to: discrete fourier transform of gaussian with shift
Search results
Results From The WOW.Com Content Network
In mathematics, the discrete Fourier transform (DFT) converts a finite sequence of equally-spaced samples of a function into a same-length sequence of equally-spaced samples of the discrete-time Fourier transform (DTFT), which is a complex-valued function of frequency. The interval at which the DTFT is sampled is the reciprocal of the duration ...
The Fourier transform of a Gaussian function is another Gaussian function. Joseph Fourier introduced sine and cosine transforms (which correspond to the imaginary and real components of the modern Fourier transform) in his study of heat transfer, where Gaussian functions appear as solutions of the heat equation.
Taking the Fourier transform (unitary, angular-frequency convention) of a Gaussian function with parameters a = 1, b = 0 and c yields another Gaussian function, with parameters , b = 0 and /. [3] So in particular the Gaussian functions with b = 0 and c = 1 {\displaystyle c=1} are kept fixed by the Fourier transform (they are eigenfunctions of ...
In applied mathematics, the non-uniform discrete Fourier transform (NUDFT or NDFT) of a signal is a type of Fourier transform, related to a discrete Fourier transform or discrete-time Fourier transform, but in which the input signal is not sampled at equally spaced points or frequencies (or both).
The discrete Fourier transform then converts convolution into multiplication, which in the matrix setting corresponds to diagonalization. The C ∗ {\displaystyle C^{*}} -algebra of all circulant matrices with complex entries is isomorphic to the group C ∗ {\displaystyle C^{*}} -algebra of Z / n Z . {\displaystyle \mathbb {Z} /n\mathbb {Z} .}
Let X(f) be the Fourier transform of any function, x(t), whose samples at some interval, T, equal the x[n] sequence.Then the discrete-time Fourier transform (DTFT) is a Fourier series representation of a periodic summation of X(f): [d]
The term discrete-time refers to the fact that the transform operates on discrete data, often samples whose interval has units of time. From uniformly spaced samples it produces a function of frequency that is a periodic summation of the continuous Fourier transform of the original continuous function.
A fast Fourier transform (FFT) is an algorithm that computes the discrete Fourier transform (DFT) of a sequence, or its inverse (IDFT). A Fourier transform converts a signal from its original domain (often time or space) to a representation in the frequency domain and vice versa.