When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Steffensen's method - Wikipedia

    en.wikipedia.org/wiki/Steffensen's_method

    % The fixed point iteration function is assumed to be input as an % inline function. % This function will calculate and return the fixed point, p, % that makes the expression f(x) = p true to within the desired % tolerance, tol. format compact % This shortens the output. format long % This prints more decimal places. for i = 1: 1000 % get ready ...

  3. Newton's method - Wikipedia

    en.wikipedia.org/wiki/Newton's_method

    For example, the function f(x) = x 20 − 1 has a root at 1. Since f ′(1) ≠ 0 and f is smooth, it is known that any Newton iteration convergent to 1 will converge quadratically. However, if initialized at 0.5, the first few iterates of Newton's method are approximately 26214, 24904, 23658, 22476, decreasing slowly, with only the 200th ...

  4. Polynomial root-finding algorithms - Wikipedia

    en.wikipedia.org/wiki/Polynomial_root-finding...

    Finding the root of a linear polynomial (degree one) is easy and needs only one division: the general equation + = has solution = /. For quadratic polynomials (degree two), the quadratic formula produces a solution, but its numerical evaluation may require some care for ensuring numerical stability .

  5. Root-finding algorithm - Wikipedia

    en.wikipedia.org/wiki/Root-finding_algorithm

    [5] [page needed] It says that, if the topological degree of a function f on a rectangle is non-zero, then the rectangle must contain at least one root of f. This criterion is the basis for several root-finding methods, such as those of Stenger [6] and Kearfott. [7] However, computing the topological degree can be time-consuming.

  6. Laguerre's method - Wikipedia

    en.wikipedia.org/wiki/Laguerre's_method

    If x is a simple root of the polynomial , then Laguerre's method converges cubically whenever the initial guess, , is close enough to the root . On the other hand, when x 1 {\displaystyle \ x_{1}\ } is a multiple root convergence is merely linear, with the penalty of calculating values for the polynomial and its first and second derivatives at ...

  7. Broyden's method - Wikipedia

    en.wikipedia.org/wiki/Broyden's_method

    In numerical analysis, Broyden's method is a quasi-Newton method for finding roots in k variables. It was originally described by C. G. Broyden in 1965. [1]Newton's method for solving f(x) = 0 uses the Jacobian matrix, J, at every iteration.

  8. Muller's method - Wikipedia

    en.wikipedia.org/wiki/Muller's_method

    Muller's method is a recursive method that generates a new approximation of a root ξ of f at each iteration using the three prior iterations. Starting with three initial values x 0, x −1 and x −2, the first iteration calculates an approximation x 1 using those three, the second iteration calculates an approximation x 2 using x 1, x 0 and x −1, the third iteration calculates an ...

  9. Brent's method - Wikipedia

    en.wikipedia.org/wiki/Brent's_method

    Function minimization at minima.hpp with an example locating function minima. Root finding implements the newer TOMS748, a more modern and efficient algorithm than Brent's original, at TOMS748, and Boost.Math rooting finding that uses TOMS748 internally with examples. The Optim.jl package implements the algorithm in Julia (programming language)

  1. Related searches how to calculate root 5 in matlab example function with solution free

    root finding algorithmhow to calculate root 5 in matlab example function with solution free download
    find root of polynomial