When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. doctest - Wikipedia

    en.wikipedia.org/wiki/Doctest

    Example one shows how narrative text can be interspersed with testable examples in a docstring. In the second example, more features of doctest are shown, together with their explanation. Example three is set up to run all doctests in a file when the file is run, but when imported as a module, the tests will not be run.

  3. Bag-of-words model - Wikipedia

    en.wikipedia.org/wiki/Bag-of-words_model

    It disregards word order (and thus most of syntax or grammar) but captures multiplicity. The bag-of-words model is commonly used in methods of document classification where, for example, the (frequency of) occurrence of each word is used as a feature for training a classifier. [1] It has also been used for computer vision. [2]

  4. Word2vec - Wikipedia

    en.wikipedia.org/wiki/Word2vec

    Word2vec is a group of related models that are used to produce word embeddings.These models are shallow, two-layer neural networks that are trained to reconstruct linguistic contexts of words.

  5. tf–idf - Wikipedia

    en.wikipedia.org/wiki/Tf–idf

    In information retrieval, tf–idf (also TF*IDF, TFIDF, TF–IDF, or Tf–idf), short for term frequency–inverse document frequency, is a measure of importance of a word to a document in a collection or corpus, adjusted for the fact that some words appear more frequently in general. [1]

  6. Document-term matrix - Wikipedia

    en.wikipedia.org/wiki/Document-term_matrix

    Certain function words such as and, the, at, a, etc., were placed in a "forbidden word list" table, and the frequency of these words was recorded in a separate listing... A special computer program, called the Descriptor Word Index Program, was written to provide this information and to prepare a document-term matrix in a form suitable for in ...

  7. Word n-gram language model - Wikipedia

    en.wikipedia.org/wiki/Word_n-gram_language_model

    A word n-gram language model is a purely statistical model of language. It has been superseded by recurrent neural network–based models, which have been superseded by large language models. [1] It is based on an assumption that the probability of the next word in a sequence depends only on a fixed size window of previous words.

  8. Word list - Wikipedia

    en.wikipedia.org/wiki/Word_list

    Word frequency is known to have various effects (Brysbaert et al. 2011; Rudell 1993). Memorization is positively affected by higher word frequency, likely because the learner is subject to more exposures (Laufer 1997). Lexical access is positively influenced by high word frequency, a phenomenon called word frequency effect (Segui et al.).

  9. Zipf's law - Wikipedia

    en.wikipedia.org/wiki/Zipf's_law

    A plot of the frequency of each word as a function of its frequency rank for two English language texts: Culpeper's Complete Herbal (1652) and H. G. Wells's The War of the Worlds (1898) in a log-log scale. The dotted line is the ideal law y ∝ ⁠ 1 / x ⁠