Search results
Results From The WOW.Com Content Network
The power factor in a single-phase circuit (or balanced three-phase circuit) can be measured with the wattmeter-ammeter-voltmeter method, where the power in watts is divided by the product of measured voltage and current. The power factor of a balanced polyphase circuit is the same as that of any phase. The power factor of an unbalanced ...
The minimum at unity power factor () is due to the general formula for the power P of a synchronous motor, = . In order to keep the power constant, with the line voltage at the terminals of the armature V A {\displaystyle V_{A}} also constant, any decrease in power factor has to be accommodated by a corresponding increase in the armature ...
Many useful motor relationships between time, current, voltage, speed, power factor, and torque can be obtained from analysis of the Steinmetz equivalent circuit (also termed T-equivalent circuit or IEEE recommended equivalent circuit), a mathematical model used to describe how an induction motor's electrical input is transformed into useful ...
It is also known as short-circuit test (because it is the mechanical analogy of a transformer short-circuit test), [1] locked rotor test or stalled torque test. [2] From this test, short-circuit current at normal voltage, power factor on short circuit, total leakage reactance, and starting torque of the motor can be found.
An industrial electric motor . An electric motor is a machine that converts electrical energy into mechanical energy.Most electric motors operate through the interaction between the motor's magnetic field and electric current in a wire winding to generate force in the form of torque applied on the motor's shaft.
is the resistive power loss (SI unit: watt) The motor constant is winding independent (as long as the same conductive material is used for wires); e.g., winding a motor with 6 turns with 2 parallel wires instead of 12 turns single wire will double the velocity constant, , but remains unchanged.
An over-excited synchronous motor has a leading power factor. This makes it useful for power-factor correction of industrial loads. Both transformers and induction motors draw lagging (magnetising) currents from the line. On light loads, the power drawn by induction motors has a large reactive component and the power factor has a low value. The ...
This ability to selectively control power factor can be exploited for power factor correction of the power system to which the motor is connected. Since most power systems of any significant size have a net lagging power factor, the presence of overexcited synchronous motors moves the system's net power factor closer to unity, improving efficiency.