Search results
Results From The WOW.Com Content Network
In statistics and uncertainty analysis, the Welch–Satterthwaite equation is used to calculate an approximation to the effective degrees of freedom of a linear combination of independent sample variances, also known as the pooled degrees of freedom, [1] [2] corresponding to the pooled variance.
In text and tables, the abbreviation "d.f." is commonly used. R. A. Fisher used n to symbolize degrees of freedom but modern usage typically reserves n for sample size. When reporting the results of statistical tests, the degrees of freedom are typically noted beside the test statistic as either subscript or in parentheses. [6]
In statistics, Welch's t-test, or unequal variances t-test, is a two-sample location test which is used to test the (null) hypothesis that two populations have equal means. It is named for its creator, Bernard Lewis Welch , and is an adaptation of Student's t -test , [ 1 ] and is more reliable when the two samples have unequal variances and ...
The difference between the two sample means, each denoted by X i, which appears in the numerator for all the two-sample testing approaches discussed above, is ¯ ¯ = The sample standard deviations for the two samples are approximately 0.05 and 0.11, respectively. For such small samples, a test of equality between the two population variances ...
The effect of Yates's correction is to prevent overestimation of statistical significance for small data. This formula is chiefly used when at least one cell of the table has an expected count smaller than 5. = = The following is Yates's corrected version of Pearson's chi-squared statistics:
If there are no ties – or the ties occur within a particular sample (which does not affect the value of the test statistic) – exact tables of S are available; for example, Jonckheere [1] provided selected tables for values of k from 3 to 6 and equal samples sizes (m) from 2 to 5.
A chi-squared test (also chi-square or χ 2 test) is a statistical hypothesis test used in the analysis of contingency tables when the sample sizes are large. In simpler terms, this test is primarily used to examine whether two categorical variables ( two dimensions of the contingency table ) are independent in influencing the test statistic ...
Suppose that we take a sample of size n from each of k populations with the same normal distribution N(μ, σ 2) and suppose that ¯ is the smallest of these sample means and ¯ is the largest of these sample means, and suppose s² is the pooled sample variance from these samples. Then the following statistic has a Studentized range distribution.