Search results
Results From The WOW.Com Content Network
The maximum likelihood estimator selects the parameter value which gives the observed data the largest possible probability (or probability density, in the continuous case). If the parameter consists of a number of components, then we define their separate maximum likelihood estimators, as the corresponding component of the MLE of the complete ...
Assume that we want to estimate an unobserved population parameter on the basis of observations . Let f {\displaystyle f} be the sampling distribution of x {\displaystyle x} , so that f ( x ∣ θ ) {\displaystyle f(x\mid \theta )} is the probability of x {\displaystyle x} when the underlying population parameter is θ {\displaystyle \theta } .
Another popular M-estimator is maximum-likelihood estimation. For a family of probability density functions f parameterized by θ, a maximum likelihood estimator of θ is computed for each set of data by maximizing the likelihood function over the parameter space { θ } .
Consider the estimator of θ based on binomial sample x~b(θ,n) where θ denotes the probability for success. Assuming θ is distributed according to the conjugate prior, which in this case is the Beta distribution B( a , b ), the posterior distribution is known to be B(a+x,b+n-x).
A consistent estimator is an estimator whose sequence of estimates converge in probability to the quantity being estimated as the index (usually the sample size) grows without bound. In other words, increasing the sample size increases the probability of the estimator being close to the population parameter.
The risk is constant, but the ML estimator is actually not a Bayes estimator, so the Corollary of Theorem 1 does not apply. However, the ML estimator is the limit of the Bayes estimators with respect to the prior sequence π n ∼ N ( 0 , n σ 2 ) {\displaystyle \pi _{n}\sim N(0,n\sigma ^{2})\,\!} , and, hence, indeed minimax according to ...
In statistics and econometrics, the maximum score estimator is a nonparametric estimator for discrete choice models developed by Charles Manski in 1975. Unlike the multinomial probit and multinomial logit estimators, it makes no assumptions about the distribution of the unobservable part of utility .
In statistics, the restricted (or residual, or reduced) maximum likelihood (REML) approach is a particular form of maximum likelihood estimation that does not base estimates on a maximum likelihood fit of all the information, but instead uses a likelihood function calculated from a transformed set of data, so that nuisance parameters have no effect.