Search results
Results From The WOW.Com Content Network
43 = (−9) × (−5) + (−2) and −2 is the least absolute remainder. In the division of 42 by 5, we have: 42 = 8 × 5 + 2, and since 2 < 5/2, 2 is both the least positive remainder and the least absolute remainder. In these examples, the (negative) least absolute remainder is obtained from the least positive remainder by subtracting 5 ...
In the above theorem, each of the four integers has a name of its own: a is called the dividend, b is called the divisor, q is called the quotient and r is called the remainder. The computation of the quotient and the remainder from the dividend and the divisor is called division, or in case of ambiguity, Euclidean division.
In computing, the modulo operation returns the remainder or signed remainder of a division, after one number is divided by another, called the modulus of the operation.. Given two positive numbers a and n, a modulo n (often abbreviated as a mod n) is the remainder of the Euclidean division of a by n, where a is the dividend and n is the divisor.
Those in which a Euclidean division (with remainder) is defined are called Euclidean domains and include polynomial rings in one indeterminate (which define multiplication and addition over single-variabled formulas). Those in which a division (with a single result) by all nonzero elements is defined are called fields and division rings.
Long division is the standard algorithm used for pen-and-paper division of multi-digit numbers expressed in decimal notation. It shifts gradually from the left to the right end of the dividend, subtracting the largest possible multiple of the divisor (at the digit level) at each stage; the multiples then become the digits of the quotient, and the final difference is then the remainder.
The quotient is also less commonly defined as the greatest whole number of times a divisor may be subtracted from a dividend—before making the remainder negative. For example, the divisor 3 may be subtracted up to 6 times from the dividend 20, before the remainder becomes negative: 20 − 3 − 3 − 3 − 3 − 3 − 3 ≥ 0, while
As in all division problems, a number called the dividend is divided by another, called the divisor. The answer to the problem would be the quotient, and in the case of Euclidean division, the remainder would be included as well. Using short division, arbitrarily large dividends can be handled. [1]
x 2 has been divided leaving no remainder, and can therefore be marked as used. The result x is then multiplied by the second term in the divisor −3 = −3x. Determine the partial remainder by subtracting 0x − (−3x) = 3x. Mark 0x as used and place the new remainder 3x above it.