Search results
Results From The WOW.Com Content Network
The relative change in resistance (temperature coefficient of resistance) varies only slightly over the useful range of the sensor. [ citation needed ] Platinum was proposed by Sir William Siemens as an element for a resistance temperature detector at the Bakerian lecture in 1871: [ 2 ] it is a noble metal and has the most stable resistance ...
The integrated circuit sensor may come in a variety of interfaces — analogue or digital; for digital, these could be Serial Peripheral Interface, SMBus/I 2 C or 1-Wire.. In OpenBSD, many of the I 2 C temperature sensors from the below list have been supported and are accessible through the generalised hardware sensors framework [3] since OpenBSD 3.9 (2006), [4] [5]: §6.1 which has also ...
An NTC is commonly used as a temperature sensor, or in series with a circuit as an inrush current limiter. With PTC thermistors, resistance increases as temperature rises; usually because of increased thermal lattice agitations, particularly those of impurities and imperfections. PTC thermistors are commonly installed in series with a circuit ...
Finding temperature from resistance and characteristics [ edit ] The equation model converts the resistance actually measured in a thermistor to its theoretical bulk temperature, with a closer approximation to actual temperature than simpler models, and valid over the entire working temperature range of the sensor.
Keep the temperature of the sensor wire constant and measure the voltage as a function of pressure; Note that keeping the temperature constant implies that the end losses (4.) and the thermal radiation losses (3.) are constant. [3] The electrical resistance of a wire varies with its temperature, so the resistance indicates the temperature of wire.
The SI unit of absolute thermal resistance is kelvins per watt (K/W) or the equivalent degrees Celsius per watt (°C/W) – the two are the same since the intervals are equal: ΔT = 1 K = 1 °C. The thermal resistance of materials is of great interest to electronic engineers because most electrical components generate heat and need to be cooled.
The Callendar–Van Dusen equation is an equation that describes the relationship between resistance (R) and temperature (T) of platinum resistance thermometers (RTD). As commonly used for commercial applications of RTD thermometers, the relationship between resistance and temperature is given by the following equations.
To ensure high quality in the Computer Command Control system, it will be given a final check at the end of the assembly line. Here the completely assembled vehicle will be tested by connecting the computer to a test computer. This will significantly improve GM's ability to catch anything wrong with the system or the car's engine." [1] [2] [3]