When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. NumPy - Wikipedia

    en.wikipedia.org/wiki/NumPy

    NumPy (pronounced / ˈ n ʌ m p aɪ / NUM-py) is a library for the Python programming language, adding support for large, multi-dimensional arrays and matrices, along with a large collection of high-level mathematical functions to operate on these arrays. [3]

  3. Python (programming language) - Wikipedia

    en.wikipedia.org/wiki/Python_(programming_language)

    Python is a high-level, general-purpose programming language. Its design philosophy emphasizes code readability with the use of significant indentation. [33] Python is dynamically type-checked and garbage-collected. It supports multiple programming paradigms, including structured (particularly procedural), object-oriented and functional ...

  4. SciPy - Wikipedia

    en.wikipedia.org/wiki/SciPy

    SciPy (pronounced / ˈ s aɪ p aɪ / "sigh pie" [2]) is a free and open-source Python library used for scientific computing and technical computing. [3]SciPy contains modules for optimization, linear algebra, integration, interpolation, special functions, FFT, signal and image processing, ODE solvers and other tasks common in science and engineering.

  5. Tutorial - Wikipedia

    en.wikipedia.org/wiki/Tutorial

    In documentation and instructional design, tutorials are teaching-level documents that help the learner progress in skill and confidence. [7] Tutorials can take the form of a screen recording (), a written document (either online or downloadable), interactive tutorial, or an audio file, where a person will give step by step instructions on how to do something.

  6. Arnoldi iteration - Wikipedia

    en.wikipedia.org/wiki/Arnoldi_iteration

    In numerical linear algebra, the Arnoldi iteration is an eigenvalue algorithm and an important example of an iterative method.Arnoldi finds an approximation to the eigenvalues and eigenvectors of general (possibly non-Hermitian) matrices by constructing an orthonormal basis of the Krylov subspace, which makes it particularly useful when dealing with large sparse matrices.

  7. Power iteration - Wikipedia

    en.wikipedia.org/wiki/Power_iteration

    #!/usr/bin/env python3 import numpy as np def power_iteration (A, num_iterations: int): # Ideally choose a random vector # To decrease the chance that our vector # Is orthogonal to the eigenvector b_k = np. random. rand (A. shape [1]) for _ in range (num_iterations): # calculate the matrix-by-vector product Ab b_k1 = np. dot (A, b_k) # calculate the norm b_k1_norm = np. linalg. norm (b_k1 ...

  8. One-step method - Wikipedia

    en.wikipedia.org/wiki/One-step_method

    The simplest and oldest one-step method, the explicit Euler method, was published by Leonhard Euler in 1768. After a group of multi-step methods was presented in 1883, Carl Runge, Karl Heun and Wilhelm Kutta developed significant improvements to Euler's method around 1900. These gave rise to the large group of Runge-Kutta methods, which form ...

  9. Euclidean algorithm - Wikipedia

    en.wikipedia.org/wiki/Euclidean_algorithm

    In each step k of the Euclidean algorithm, the quotient q k and remainder r k are computed for a given pair of integers r k−2 and r k−1. r k−2 = q k r k−1 + r k. The computational expense per step is associated chiefly with finding q k, since the remainder r k can be calculated quickly from r k−2, r k−1, and q k. r k = r k−2 − q ...