Search results
Results From The WOW.Com Content Network
In atomic physics, the Bohr model or Rutherford–Bohr model was the first successful model of the atom. Developed from 1911 to 1918 by Niels Bohr and building on Ernest Rutherford 's nuclear model , it supplanted the plum pudding model of J J Thomson only to be replaced by the quantum atomic model in the 1920s.
The Bohr–Sommerfeld model (also known as the Sommerfeld model or Bohr–Sommerfeld theory) was an extension of the Bohr model to allow elliptical orbits of electrons around an atomic nucleus. Bohr–Sommerfeld theory is named after Danish physicist Niels Bohr and German physicist Arnold Sommerfeld .
The Bohr model of the chemical bond took into account the Coulomb repulsion - the electrons in the ring are at the maximum distance from each other. [ 2 ] Thus, according to this model, the methane molecule is a regular tetrahedron , in which center the carbon nucleus locates, and in the corners - the nucleus of hydrogen.
Niels Henrik David Bohr (7 October 1885 – 18 November 1962) was a Danish theoretical physicist who made foundational contributions to understanding atomic structure and quantum theory, for which he received the Nobel Prize in Physics in 1922.
Bohr's model of the atom was essentially a planetary one, with the electrons orbiting around the nuclear "sun". However, the uncertainty principle states that an electron cannot simultaneously have an exact location and velocity in the way that a planet does. Instead of classical orbits, electrons are said to inhabit atomic orbitals.
Bohr–Mollerup theorem (gamma function) Bohr–van Leeuwen theorem ; Bolyai–Gerwien theorem (discrete geometry) Bolzano's theorem (real analysis, calculus) Bolzano–Weierstrass theorem (real analysis, calculus) Bombieri's theorem (number theory) Bombieri–Friedlander–Iwaniec theorem (number theory) Bondareva–Shapley theorem
If you've been having trouble with any of the connections or words in Friday's puzzle, you're not alone and these hints should definitely help you out. Plus, I'll reveal the answers further down ...
In physics, complementarity is a conceptual aspect of quantum mechanics that Niels Bohr regarded as an essential feature of the theory. [1] [2] The complementarity principle holds that certain pairs of complementary properties cannot all be observed or measured simultaneously.