Ad
related to: nucleotide blast align two sequences of amino acids and one
Search results
Results From The WOW.Com Content Network
In bioinformatics, BLAST (basic local alignment search tool) [3] is an algorithm and program for comparing primary biological sequence information, such as the amino-acid sequences of proteins or the nucleotides of DNA and/or RNA sequences. A BLAST search enables a researcher to compare a subject protein or nucleotide sequence (called a query ...
In bioinformatics, a sequence alignment is a way of arranging the sequences of DNA, RNA, or protein to identify regions of similarity that may be a consequence of functional, structural, or evolutionary relationships between the sequences. [1] Aligned sequences of nucleotide or amino acid residues are typically represented as rows within a matrix.
For proteins, this method usually involves two sets of parameters: a gap penalty and a substitution matrix assigning scores or probabilities to the alignment of each possible pair of amino acids based on the similarity of the amino acids' chemical properties and the evolutionary probability of the mutation. For nucleotide sequences, a similar ...
A scoring matrix or a table of values is required for evaluating the significance of a sequence alignment, such as describing the probability of a biologically meaningful amino-acid or nucleotide residue-pair occurring in an alignment. Typically, when two nucleotide sequences are being compared, all that is being scored is whether or not two ...
In bioinformatics, MAFFT (multiple alignment using fast Fourier transform) is a program used to create multiple sequence alignments of amino acid or nucleotide sequences. Published in 2002, the first version used an algorithm based on progressive alignment , in which the sequences were clustered with the help of the fast Fourier transform . [ 2 ]
The Needleman–Wunsch algorithm is an algorithm used in bioinformatics to align protein or nucleotide sequences. It was one of the first applications of dynamic programming to compare biological sequences. The algorithm was developed by Saul B. Needleman and Christian D. Wunsch and published in 1970. [1]
A sequence alignment of mammalian histone proteins. Sequences are the middle 120-180 amino acid residues of the proteins. Residues that are conserved across all sequences are highlighted in grey. The key below denotes conserved sequence (*), conservative mutations (:), semi-conservative mutations (.), and non-conservative mutations ( ). [2]
The main diagonal represents the sequence's alignment with itself; lines off the main diagonal represent similar or repetitive patterns within the sequence. In bioinformatics a dot plot is a graphical method for comparing two biological sequences and identifying regions of close similarity after sequence alignment. It is a type of recurrence plot.