When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Point reflection - Wikipedia

    en.wikipedia.org/wiki/Point_reflection

    In the Euclidean plane, a point reflection is the same as a half-turn rotation (180° or π radians), while in three-dimensional Euclidean space a point reflection is an improper rotation which preserves distances but reverses orientation. A point reflection is an involution: applying it twice is the identity transformation.

  3. Reflection (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Reflection_(mathematics)

    Point Q is the reflection of point P through the line AB. In a plane (or, respectively, 3-dimensional) geometry, to find the reflection of a point drop a perpendicular from the point to the line (plane) used for reflection, and extend it the same distance on the other side. To find the reflection of a figure, reflect each point in the figure.

  4. Rotation matrix - Wikipedia

    en.wikipedia.org/wiki/Rotation_matrix

    rotates points in the xy plane counterclockwise through an angle θ about the origin of a two-dimensional Cartesian coordinate system. To perform the rotation on a plane point with standard coordinates v = (x, y), it should be written as a column vector, and multiplied by the matrix R:

  5. Rotations and reflections in two dimensions - Wikipedia

    en.wikipedia.org/wiki/Rotations_and_reflections...

    A rotation in the plane can be formed by composing a pair of reflections. First reflect a point P to its image P′ on the other side of line L 1. Then reflect P′ to its image P′′ on the other side of line L 2. If lines L 1 and L 2 make an angle θ with one another, then points P and P′′ will make an angle 2θ around point O, the ...

  6. Transformation matrix - Wikipedia

    en.wikipedia.org/wiki/Transformation_matrix

    A reflection about a line or plane that does not go through the origin is not a linear transformation — it is an affine transformation — as a 4×4 affine transformation matrix, it can be expressed as follows (assuming the normal is a unit vector): [′ ′ ′] = [] [] where = for some point on the plane, or equivalently, + + + =.

  7. Smith chart - Wikipedia

    en.wikipedia.org/wiki/Smith_chart

    A point with a reflection coefficient magnitude 0.63 and angle 60° represented in polar form as , is shown as point P 1 on the Smith chart. To plot this, one may use the circumferential (reflection coefficient) angle scale to find the ∠ 60 ∘ {\displaystyle \angle 60^{\circ }\,} graduation and a ruler to draw a line passing through this and ...

  8. Plane-based geometric algebra - Wikipedia

    en.wikipedia.org/wiki/Plane-based_geometric_algebra

    L is a 2-reflection and is a 3-reflection, so taking their geometric product PL in some sense produces a 5-reflection; however, as in the picture below, two of these reflections cancel, leaving a 3-reflection (sometimes known as a rotoreflection). In the plane-based geometric algebra notation, this rotoreflection can be thought of as a planar ...

  9. Tetrahedral symmetry - Wikipedia

    en.wikipedia.org/wiki/Tetrahedral_symmetry

    A regular tetrahedron, an example of a solid with full tetrahedral symmetry. A regular tetrahedron has 12 rotational (or orientation-preserving) symmetries, and a symmetry order of 24 including transformations that combine a reflection and a rotation.