Search results
Results From The WOW.Com Content Network
In nuclear physics, the Geiger–Nuttall law or Geiger–Nuttall rule relates the decay constant of a radioactive isotope with the energy of the alpha particles emitted. Roughly speaking, it states that short-lived isotopes emit more energetic alpha particles than long-lived ones.
Single-core performance was improving by 52% per year in 1986–2003 and 23% per year in 2003–2011, but slowed to just seven percent per year in 2011–2018. [ 146 ] Quality adjusted price of IT equipment – The price of information technology (IT), computers and peripheral equipment, adjusted for quality and inflation, declined 16% per year ...
The rule assumes the Russell–Saunders coupling and that interactions between spin magnetic moments can be ignored. The latter is an incorrect assumption for light atoms. As a result of this, the rule is optimally followed by atoms with medium atomic numbers. [4] The rule was first stated in 1923 by German-American physicist Alfred Landé. [1]
Oresme's geometric verification of the Oxford Calculators' Merton Rule of uniform acceleration, or mean speed theorem. Galileo's demonstration of the law of the space traversed in case of uniformly varied motion. It is the same demonstration that Oresme had made centuries earlier.
This simplification allows the number of cycles until failure of a component to be determined for each rainflow cycle using either Miner's rule to calculate the fatigue damage, or in a crack growth equation to calculate the crack increments. [2] Both methods give an estimate of the fatigue life of a component.
For standard scenarios under the full-year rule and half-year rule models, the following standard items are employed: [25] I = Investment d = CCA rate per year for tax purposes t = rate of taxation n = number of years i = cost of capital, rate of interest, or minimum rate of return (whichever is most relevant)
In atomic physics and quantum chemistry, Hund's rules refers to a set of rules that German physicist Friedrich Hund formulated around 1925, which are used to determine the term symbol that corresponds to the ground state of a multi-electron atom. The first rule is especially important in chemistry, where it is often referred to simply as Hund's ...
This problem is overcome in different ways depending on particle spin–statistics. For a state of integer spin the negative norm states (known as "unphysical polarization") are set to zero, which makes the use of gauge symmetry necessary. For a state of half-integer spin the argument can be circumvented by having fermionic statistics. [21]