Search results
Results From The WOW.Com Content Network
In computer science, a for-loop or for loop is a control flow statement for specifying iteration. Specifically, a for-loop functions by running a section of code repeatedly until a certain condition has been satisfied. For-loops have two parts: a header and a body. The header defines the iteration and the body is the code executed once per ...
An example of a primitive recursive programming language is one that contains basic arithmetic operators (e.g. + and −, or ADD and SUBTRACT), conditionals and comparison (IF-THEN, EQUALS, LESS-THAN), and bounded loops, such as the basic for loop, where there is a known or calculable upper bound to all loops (FOR i FROM 1 TO n, with neither i ...
This algorithm can easily be adapted to compute the variance of a finite population: simply divide by n instead of n − 1 on the last line.. Because SumSq and (Sum×Sum)/n can be very similar numbers, cancellation can lead to the precision of the result to be much less than the inherent precision of the floating-point arithmetic used to perform the computation.
Prefix sums are trivial to compute in sequential models of computation, by using the formula y i = y i − 1 + x i to compute each output value in sequence order. However, despite their ease of computation, prefix sums are a useful primitive in certain algorithms such as counting sort, [1] [2] and they form the basis of the scan higher-order function in functional programming languages.
The sum type corresponds to intuitionistic logical disjunction under the Curry–Howard correspondence. An enumerated type can be seen as a degenerate case: a tagged union of unit types. It corresponds to a set of nullary constructors and may be implemented as a simple tag variable, since it holds no additional data besides the value of the tag.
Because the algorithm uses only simple for loops, without recursion or subroutine calls, it is straightforward to analyze. The initialization of the count array, and the second for loop which performs a prefix sum on the count array, each iterate at most k + 1 times and therefore take O(k) time.
In mathematics, summation is the addition of a sequence of numbers, called addends or summands; the result is their sum or total.Beside numbers, other types of values can be summed as well: functions, vectors, matrices, polynomials and, in general, elements of any type of mathematical objects on which an operation denoted "+" is defined.
Another term for it is partial sum. The purposes of a running total are twofold. First, it allows the total to be stated at any point in time without having to sum the entire sequence each time. Second, it can save having to record the sequence itself, if the particular numbers are not individually important.