Search results
Results From The WOW.Com Content Network
The boundary of an -manifold with boundary is an ()-manifold. A disk (circle plus interior) is a 2-manifold with boundary. Its boundary is a circle, a 1-manifold. A square with interior is also a 2-manifold with boundary. A ball (sphere plus interior) is a 3-manifold with boundary. Its boundary is a sphere, a 2-manifold.
A boundary point of a set is any element of that set's boundary. The boundary defined above is sometimes called the set's topological boundary to distinguish it from other similarly named notions such as the boundary of a manifold with boundary or the boundary of a manifold with corners, to name just a few examples.
The boundary of a manifold is a manifold , which has dimension . An orientation on M {\displaystyle M} induces an orientation on ∂ M {\displaystyle \partial M} . We usually denote a submanifold by Σ ⊂ M {\displaystyle \Sigma \subset M} .
In mathematics, particularly topology, an atlas is a concept used to describe a manifold. An atlas consists of individual charts that, roughly speaking, describe individual regions of the manifold. In general, the notion of atlas underlies the formal definition of a manifold and related structures such as vector bundles and other fiber bundles.
A number of advances starting in the 1960s had the effect of emphasising low dimensions in topology. The solution by Stephen Smale, in 1961, of the Poincaré conjecture in five or more dimensions made dimensions three and four seem the hardest; and indeed they required new methods, while the freedom of higher dimensions meant that questions could be reduced to computational methods available ...
In differential topology, a branch of mathematics, a Mazur manifold is a contractible, compact, smooth four-dimensional manifold-with-boundary which is not diffeomorphic to the standard 4-ball. Usually these manifolds are further required to have a handle decomposition with a single 1 {\displaystyle 1} -handle, and a single 2 {\displaystyle 2 ...
A manifold is called a "k-handlebody" if it is the union of r-handles, for r at most k. This is not the same as the dimension of the manifold. For instance, a 4-dimensional 2-handlebody is a union of 0-handles, 1-handles and 2-handles. Any manifold is an n-handlebody, that is, any manifold is the union of handles.
Union along a subset of the boundaries. Note that the handles must generally be added in a specific order. Haken hierarchy: Any Haken manifold: Cut along a sequence of incompressible surfaces 3-balls: Disk decomposition Certain compact, orientable 3-manifolds: Suture the manifold, then cut along special surfaces (condition on boundary curves ...