When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. 24-cell - Wikipedia

    en.wikipedia.org/wiki/24-cell

    Now 3 perpendicular edges meet and form the corner of a cube at each of the 16 remaining vertices, [be] and the 32 remaining edges divide the surface into 24 square faces and 8 cubic cells: a tesseract. There are three ways you can do this (choose a set of 8 orthogonal vertices out of 24), so there are three such tesseracts inscribed in the 24 ...

  3. Point groups in three dimensions - Wikipedia

    en.wikipedia.org/wiki/Point_groups_in_three...

    This group has six mirror planes, each containing two edges of the cube or one edge of the tetrahedron, a single S 4 axis, and two C 3 axes. T d is isomorphic to S 4, the symmetric group on 4 letters, because there is a 1-to-1 correspondence between the elements of T d and the 24 permutations of the four 3-fold axes.

  4. Tetrahedron - Wikipedia

    en.wikipedia.org/wiki/Tetrahedron

    If all three pairs of opposite edges of a tetrahedron are perpendicular, then it is called an orthocentric tetrahedron. When only one pair of opposite edges are perpendicular, it is called a semi-orthocentric tetrahedron. In a trirectangular tetrahedron the three face angles at one vertex are right angles, as at the corner of a cube.

  5. Base (geometry) - Wikipedia

    en.wikipedia.org/wiki/Base_(geometry)

    The extended base of a triangle (a particular case of an extended side) is the line that contains the base. When the triangle is obtuse and the base is chosen to be one of the sides adjacent to the obtuse angle , then the altitude dropped perpendicularly from the apex to the base intersects the extended base outside of the triangle.

  6. Hypercube - Wikipedia

    en.wikipedia.org/wiki/Hypercube

    In geometry, a hypercube is an n-dimensional analogue of a square (n = 2) and a cube (n = 3); the special case for n = 4 is known as a tesseract.It is a closed, compact, convex figure whose 1-skeleton consists of groups of opposite parallel line segments aligned in each of the space's dimensions, perpendicular to each other and of the same length.

  7. Face (geometry) - Wikipedia

    en.wikipedia.org/wiki/Face_(geometry)

    where V is the number of vertices, E is the number of edges, and F is the number of faces. This equation is known as Euler's polyhedron formula. Thus the number of faces is 2 more than the excess of the number of edges over the number of vertices. For example, a cube has 12 edges and 8 vertices, and hence 6 faces.

  8. Straightedge and compass construction - Wikipedia

    en.wikipedia.org/wiki/Straightedge_and_compass...

    Doubling the cube is the construction, using only a straightedge and compass, of the edge of a cube that has twice the volume of a cube with a given edge. This is impossible because the cube root of 2, though algebraic, cannot be computed from integers by addition, subtraction, multiplication, division, and taking square roots.

  9. Cube - Wikipedia

    en.wikipedia.org/wiki/Cube

    Like other cuboids, every face of a cube has four vertices, each of which connects with three congruent lines. These edges form square faces, making the dihedral angle of a cube between every two adjacent squares being the interior angle of a square, 90°. Hence, the cube has six faces, twelve edges, and eight vertices.