Search results
Results From The WOW.Com Content Network
For the special antiderivatives involving trigonometric functions, see Trigonometric integral. [ 1 ] Generally, if the function sin x {\displaystyle \sin x} is any trigonometric function, and cos x {\displaystyle \cos x} is its derivative,
Si(x) (blue) and Ci(x) (green) shown on the same plot. Sine integral in the complex plane, plotted with a variant of domain coloring. Cosine integral in the complex plane. Note the branch cut along the negative real axis. In mathematics, trigonometric integrals are a family of nonelementary integrals involving trigonometric functions.
The substitution is described in most integral calculus textbooks since the late 19th century, usually without any special name. [5] It is known in Russia as the universal trigonometric substitution , [ 6 ] and also known by variant names such as half-tangent substitution or half-angle substitution .
Ptolemy's theorem states that the sum of the products of the lengths of opposite sides is equal to the product of the lengths of the diagonals. When those side-lengths are expressed in terms of the sin and cos values shown in the figure above, this yields the angle sum trigonometric identity for sine: sin(α + β) = sin α cos β + cos α sin β.
If the function f does not have any continuous antiderivative which takes the value zero at the zeros of f (this is the case for the sine and the cosine functions), then sgn(f(x)) ∫ f(x) dx is an antiderivative of f on every interval on which f is not zero, but may be discontinuous at the points where f(x) = 0.
In the integral , we may use = , = , = . Then, = = () = = = + = +. The above step requires that > and > We can choose to be the principal root of , and impose the restriction / < < / by using the inverse sine function.
In this case, 1 / 3 + 1 / 5 + … + 1 / 111 < 2, but 1 / 3 + 1 / 5 + … + 1 / 113 > 2. The exact answer can be calculated using the general formula provided in the next section, and a representation of it is shown below. Fully expanded, this value turns into a fraction that involves two 2736 ...
Twice the area of the purple triangle is the stereographic projection s = tan 1 / 2 ϕ = tanh 1 / 2 ψ. The blue point has coordinates (cosh ψ, sinh ψ). The red point has coordinates (cos ϕ, sin ϕ). The purple point has coordinates (0, s). The integral of the hyperbolic secant function defines the Gudermannian function: