Search results
Results From The WOW.Com Content Network
For the special antiderivatives involving trigonometric functions, see Trigonometric integral. [ 1 ] Generally, if the function sin x {\displaystyle \sin x} is any trigonometric function, and cos x {\displaystyle \cos x} is its derivative,
In mathematics, the definite integral ()is the area of the region in the xy-plane bounded by the graph of f, the x-axis, and the lines x = a and x = b, such that area above the x-axis adds to the total, and that below the x-axis subtracts from the total.
Integration is the basic operation in integral calculus.While differentiation has straightforward rules by which the derivative of a complicated function can be found by differentiating its simpler component functions, integration does not, so tables of known integrals are often useful.
Ptolemy's theorem states that the sum of the products of the lengths of opposite sides is equal to the product of the lengths of the diagonals. When those side-lengths are expressed in terms of the sin and cos values shown in the figure above, this yields the angle sum trigonometric identity for sine: sin(α + β) = sin α cos β + cos α sin β.
Plot of Si(x) for 0 ≤ x ≤ 8π. Plot of the cosine integral function Ci(z) in the complex plane from −2 − 2i to 2 + 2i. The different sine integral definitions are = = .
At this point we can either integrate directly, or we can first change the integrand to 2 cos 6x − 4 cos 4x + 2 cos 2x and continue from there. Either method gives Either method gives ∫ sin 2 x cos 4 x d x = − 1 24 sin 6 x + 1 8 sin 4 x − 1 8 sin 2 x + C . {\displaystyle \int \sin ^{2}x\cos 4x\,dx=-{\frac {1}{24 ...
For a complete list of integral formulas, see lists of integrals. In all formulas the constant a is assumed to be nonzero, and C denotes the constant of integration . For each inverse hyperbolic integration formula below there is a corresponding formula in the list of integrals of inverse trigonometric functions .
By means of integration by parts, a reduction formula can be obtained. Using the identity sin 2 x = 1 − cos 2 x {\displaystyle \sin ^{2}x=1-\cos ^{2}x} , we have for all n ≥ 2 {\displaystyle n\geq 2} ,