Search results
Results From The WOW.Com Content Network
Since resistivity usually increases as defect prevalence increases, a large RRR is associated with a pure sample. RRR is also important for characterizing certain unusual low temperature states such as the Kondo effect and superconductivity. Note that since it is a unitless ratio there is no difference between a residual resistivity and ...
Protein folding problem: Is it possible to predict the secondary, tertiary and quaternary structure of a polypeptide sequence based solely on the sequence and environmental information? Inverse protein-folding problem: Is it possible to design a polypeptide sequence which will adopt a given structure under certain environmental conditions?
chemistry (Proportion of "active" molecules or atoms) Arrhenius number = Svante Arrhenius: chemistry (ratio of activation energy to thermal energy) [1] Atomic weight: M: chemistry (mass of one atom divided by the atomic mass constant, 1 Da) Bodenstein number: Bo or Bd
The thermal conductivity of a material is a measure of its ability to conduct heat.It is commonly denoted by , , or and is measured in W·m −1 ·K −1.. Heat transfer occurs at a lower rate in materials of low thermal conductivity than in materials of high thermal conductivity.
is the thermal resistivity (K·m/W) of the sample; is the cross-sectional area (m 2) perpendicular to the path of heat flow. In terms of the temperature gradient across the sample and heat flux through the sample, the relationship is:
In general, the resistivity of a material exists because an electron, while moving inside a medium, is scattered by impurities, defects, thermal fluctuations of ions in a crystalline solid, or, generally, by any freely-moving atom/molecule composing a gas or liquid.
The van der Pauw Method is a technique commonly used to measure the resistivity and the Hall coefficient of a sample. Its strength lies in its ability to accurately measure the properties of a sample of any arbitrary shape, as long as the sample is approximately two-dimensional (i.e. it is much thinner than it is wide), solid (no holes), and the electrodes are placed on its perimeter.
Electrical resistivity (also called volume resistivity or specific electrical resistance) is a fundamental specific property of a material that measures its electrical resistance or how strongly it resists electric current. A low resistivity indicates a material that readily allows electric current.