Ads
related to: matrix product matlab
Search results
Results From The WOW.Com Content Network
Block matrix operations; Cracovian product, defined as A ∧ B = B T A; Frobenius inner product, the dot product of matrices considered as vectors, or, equivalently the sum of the entries of the Hadamard product; Hadamard product of two matrices of the same size, resulting in a matrix of the same size, which is the product entry-by-entry
The Hadamard product operates on identically shaped matrices and produces a third matrix of the same dimensions. In mathematics, the Hadamard product (also known as the element-wise product, entrywise product [1]: ch. 5 or Schur product [2]) is a binary operation that takes in two matrices of the same dimensions and returns a matrix of the multiplied corresponding elements.
The definition of matrix multiplication is that if C = AB for an n × m matrix A and an m × p matrix B, then C is an n × p matrix with entries = =. From this, a simple algorithm can be constructed which loops over the indices i from 1 through n and j from 1 through p, computing the above using a nested loop:
In mathematics, the Kronecker product, sometimes denoted by ⊗, is an operation on two matrices of arbitrary size resulting in a block matrix.It is a specialization of the tensor product (which is denoted by the same symbol) from vectors to matrices and gives the matrix of the tensor product linear map with respect to a standard choice of basis.
The vectorization is frequently used together with the Kronecker product to express matrix multiplication as a linear transformation on matrices. In particular, vec ( A B C ) = ( C T ⊗ A ) vec ( B ) {\displaystyle \operatorname {vec} (ABC)=(C^{\mathrm {T} }\otimes A)\operatorname {vec} (B)} for matrices A , B , and C of dimensions k ...
Hadamard product (matrices) Hilbert–Schmidt inner product; Kronecker product; Matrix analysis; Matrix multiplication; Matrix norm; Tensor product of Hilbert spaces – the Frobenius inner product is the special case where the vector spaces are finite-dimensional real or complex vector spaces with the usual Euclidean inner product
This product assumes the partitions of the matrices are their columns. In this case m 1 = m, p 1 = p, n = q and for each j: n j = q j = 1. The resulting product is a mp × n matrix of which each column is the Kronecker product of the corresponding columns of A and B. Using the matrices from the previous examples with the columns partitioned:
In theoretical computer science, the computational complexity of matrix multiplication dictates how quickly the operation of matrix multiplication can be performed. Matrix multiplication algorithms are a central subroutine in theoretical and numerical algorithms for numerical linear algebra and optimization, so finding the fastest algorithm for matrix multiplication is of major practical ...