Search results
Results From The WOW.Com Content Network
Illustration of the Kolmogorov–Smirnov statistic. The red line is a model CDF, the blue line is an empirical CDF, and the black arrow is the KS statistic.. In statistics, the Kolmogorov–Smirnov test (also K–S test or KS test) is a nonparametric test of the equality of continuous (or discontinuous, see Section 2.2), one-dimensional probability distributions.
Kolmogorov–Smirnov test: this test only works if the mean and the variance of the normal distribution are assumed known under the null hypothesis, Lilliefors test: based on the Kolmogorov–Smirnov test, adjusted for when also estimating the mean and variance from the data, Shapiro–Wilk test, and; Pearson's chi-squared test.
Lilliefors test is a normality test based on the Kolmogorov–Smirnov test.It is used to test the null hypothesis that data come from a normally distributed population, when the null hypothesis does not specify which normal distribution; i.e., it does not specify the expected value and variance of the distribution. [1]
The Kolmogorov–Smirnov test is based on cumulative distribution functions and can be used to test to see whether two empirical distributions are different or whether an empirical distribution is different from an ideal distribution. The closely related Kuiper's test is useful if the domain of the distribution is cyclic as in day of the week ...
This score is a Kolmogorov–Smirnov-like statistic. [1] [2] Estimate the statistical significance of the ES. This calculation is done by a phenotypic-based permutation test in order to produce a null distribution for the ES. The P value is determined by comparison to the null distribution. [1] [2]
Kolmogorov–Smirnov test: tests whether a sample is drawn from a given distribution, or whether two samples are drawn from the same distribution. Kruskal–Wallis one-way analysis of variance by ranks: tests whether > 2 independent samples are drawn from the same distribution.
Confidence bands can be constructed around estimates of the empirical distribution function.Simple theory allows the construction of point-wise confidence intervals, but it is also possible to construct a simultaneous confidence band for the cumulative distribution function as a whole by inverting the Kolmogorov-Smirnov test, or by using non-parametric likelihood methods.
Kolmogorov–Smirnov test; L. Lilliefors test; N. Normal probability plot; P. Pearson's chi-squared test; S. Shapiro–Francia test; Shapiro–Wilk test This ...