Search results
Results From The WOW.Com Content Network
For radar (e.g. for wavelengths 300 to 3 mm i.e. frequencies between 1 and 100 GHz) the radius of the Earth may be multiplied by 4/3 to obtain an effective radius giving a factor of 4.12 in the metric formula i.e. the radar horizon will be 15% beyond the geometrical horizon or 7% beyond the visual. The 4/3 factor is not exact, as in the visual ...
Altitude (alt.), sometimes referred to as elevation (el.) or apparent height, is the angle between the object and the observer's local horizon. For visible objects, it is an angle between 0° and 90°. [b] Azimuth (az.) is the angle of the object around the horizon, usually measured from true north and increasing eastward.
In standard cosmology, comoving distance and proper distance (or physical distance) are two closely related distance measures used by cosmologists to define distances between objects. Comoving distance factors out the expansion of the universe , giving a distance that does not change in time except due to local factors, such as the motion of a ...
The particle horizon, also called the cosmological horizon, the comoving horizon, or the cosmic light horizon, is the maximum distance from which light from particles could have traveled to the observer in the age of the universe. It represents the boundary between the observable and the unobservable regions of the universe, so its distance at ...
In astronomy, coordinate systems are used for specifying positions of celestial objects (satellites, planets, stars, galaxies, etc.) relative to a given reference frame, based on physical reference points available to a situated observer (e.g. the true horizon and north to an observer on Earth's surface). [1]
Diagram showing the relationship between the zenith, the nadir, and different types of horizon. The zenith (UK: / ˈ z ɛ n ɪ θ /, US: / ˈ z iː n ɪ θ /) [1] is the imaginary point on the celestial sphere directly "above" a particular location. "Above" means in the vertical direction opposite to the gravity direction at that location . The ...
Posidonius calculated the Earth's circumference by reference to the position of the star Canopus.As explained by Cleomedes, Posidonius observed Canopus on but never above the horizon at Rhodes, while at Alexandria he saw it ascend as far as 7 + 1 ⁄ 2 degrees above the horizon (the meridian arc between the latitude of the two locales is actually 5 degrees 14 minutes).
This can be used to define a type of cosmic event horizon whose distance from the Earth changes over time. For example, the current distance to this horizon is about 16 billion light-years, meaning that a signal from an event happening at present can eventually reach the Earth if the event is less than 16 billion light-years away, but the ...