When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Cube - Wikipedia

    en.wikipedia.org/wiki/Cube

    Like other cuboids, every face of a cube has four vertices, each of which connects with three congruent lines. These edges form square faces, making the dihedral angle of a cube between every two adjacent squares being the interior angle of a square, 90°. Hence, the cube has six faces, twelve edges, and eight vertices.

  3. Kinematics of the cuboctahedron - Wikipedia

    en.wikipedia.org/wiki/Kinematics_of_the_cub...

    The cuboctahedron can flex this way even if its edges (but not its faces) are rigid. The skeleton of a cuboctahedron, considering its edges as rigid beams connected at flexible joints at its vertices but omitting its faces, does not have structural rigidity. Consequently, its vertices can be repositioned by folding (changing the dihedral angle ...

  4. Cube mapping - Wikipedia

    en.wikipedia.org/wiki/Cube_mapping

    The lower left image shows a scene with a viewpoint marked with a black dot. The upper image shows the net of the cube mapping as seen from that viewpoint, and the lower right image shows the cube superimposed on the original scene. In computer graphics, cube mapping is a method of environment mapping that uses the six faces of a cube as the ...

  5. Truncated cuboctahedron - Wikipedia

    en.wikipedia.org/wiki/Truncated_cuboctahedron

    It has 12 square faces, 8 regular hexagonal faces, 6 regular octagonal faces, 48 vertices, and 72 edges. Since each of its faces has point symmetry (equivalently, 180° rotational symmetry), the truncated cuboctahedron is a 9-zonohedron. The truncated cuboctahedron can tessellate with the octagonal prism.

  6. Cuboctahedron - Wikipedia

    en.wikipedia.org/wiki/Cuboctahedron

    In a cuboctahedron, the long radius (center to vertex) is the same as the edge length; thus its long diameter (vertex to opposite vertex) is 2 edge lengths. [14] Its center is like the apical vertex of a canonical pyramid: one edge length away from all the other vertices. (In the case of the cuboctahedron, the center is in fact the apex of 6 ...

  7. Net (polyhedron) - Wikipedia

    en.wikipedia.org/wiki/Net_(polyhedron)

    For example, in the case of a cube, if the points are on adjacent faces one candidate for the shortest path is the path crossing the common edge; the shortest path of this kind is found using a net where the two faces are also adjacent. Other candidates for the shortest path are through the surface of a third face adjacent to both (of which ...

  8. Compound of four cubes - Wikipedia

    en.wikipedia.org/wiki/Compound_of_four_cubes

    Each colored cube has two opposite vertices on a 3-fold symmetry axis, which are shared with the black cube. (In the picture both 3-fold vertices of the green cube are visible.) The remaining six vertices of each colored cube correspond to the faces of the black cube. This compound shares these properties with the compound of five cubes ...

  9. Truncation (geometry) - Wikipedia

    en.wikipedia.org/wiki/Truncation_(geometry)

    Faces are reduced to half as many sides, and square faces degenerate into edges. For example, the tetrahedron is an alternated cube, h{4,3}. Diminishment is a more general term used in reference to Johnson solids for the removal of one or more vertices, edges, or faces of a polytope, without disturbing the other vertices.