When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Law of the wall - Wikipedia

    en.wikipedia.org/wiki/Law_of_the_wall

    The logarithmic law of the wall is a self similar solution for the mean velocity parallel to the wall, and is valid for flows at high Reynolds numbers — in an overlap region with approximately constant shear stress and far enough from the wall for (direct) viscous effects to be negligible: [3]

  3. Shear stress - Wikipedia

    en.wikipedia.org/wiki/Shear_stress

    The formula to calculate average shear stress τ or force per unit area is: [1] =, where F is the force applied and A is the cross-sectional area.. The area involved corresponds to the material face parallel to the applied force vector, i.e., with surface normal vector perpendicular to the force.

  4. Menter's Shear Stress Transport - Wikipedia

    en.wikipedia.org/wiki/Menter's_Shear_Stress...

    Menter's Shear Stress Transport turbulence model, or SST, is a widely used and robust two-equation eddy-viscosity turbulence model used in Computational Fluid Dynamics.The model combines the k-omega turbulence model and K-epsilon turbulence model such that the k-omega is used in the inner region of the boundary layer and switches to the k-epsilon in the free shear flow.

  5. Fluid–structure interaction - Wikipedia

    en.wikipedia.org/wiki/Fluid–structure_interaction

    Failure to take into account this property of blood vessels can lead to a significant overestimation of resulting wall shear stress (WSS). This effect is especially imperative to take into account when analyzing aneurysms. It has become common practice to use computational fluid dynamics to analyze patient specific models. The neck of an ...

  6. Von Kármán constant - Wikipedia

    en.wikipedia.org/wiki/Von_Kármán_constant

    In fluid dynamics, the von Kármán constant (or Kármán's constant), named for Theodore von Kármán, is a dimensionless constant involved in the logarithmic law describing the distribution of the longitudinal velocity in the wall-normal direction of a turbulent fluid flow near a boundary with a no-slip condition.

  7. Blasius boundary layer - Wikipedia

    en.wikipedia.org/wiki/Blasius_boundary_layer

    A schematic diagram of the Blasius flow profile. The streamwise velocity component () / is shown, as a function of the similarity variable .. Using scaling arguments, Ludwig Prandtl [1] argued that about half of the terms in the Navier-Stokes equations are negligible in boundary layer flows (except in a small region near the leading edge of the plate).

  8. Shear rate - Wikipedia

    en.wikipedia.org/wiki/Shear_rate

    For a Newtonian fluid wall, shear stress (τ w) can be related to shear rate by = ˙ where μ is the dynamic viscosity of the fluid. For non-Newtonian fluids, there are different constitutive laws depending on the fluid, which relates the stress tensor to the shear rate tensor.

  9. Shear flow - Wikipedia

    en.wikipedia.org/wiki/Shear_flow

    In these instances, it can be useful to express internal shear stress as shear flow, which is found as the shear stress multiplied by the thickness of the section. An equivalent definition for shear flow is the shear force V per unit length of the perimeter around a thin-walled section. Shear flow has the dimensions of force per unit of length. [1]