When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. List of text mining methods - Wikipedia

    en.wikipedia.org/wiki/List_of_text_mining_methods

    Cluster Algorithm. Hierarchical Clustering. Agglomerative Clustering: Bottom-up approach. Each cluster is small and then aggregates together to form larger clusters. [3] Divisive Clustering: Top-down approach. Large clusters are split into smaller clusters. [3] Density-based Clustering: A structure is determined by the density of data points ...

  3. Hierarchical clustering - Wikipedia

    en.wikipedia.org/wiki/Hierarchical_clustering

    The basic principle of divisive clustering was published as the DIANA (DIvisive ANAlysis clustering) algorithm. [20] Initially, all data is in the same cluster, and the largest cluster is split until every object is separate. Because there exist () ways of splitting each cluster, heuristics are needed. DIANA chooses the object with the maximum ...

  4. Cluster analysis - Wikipedia

    en.wikipedia.org/wiki/Cluster_analysis

    Hard clustering: each object belongs to a cluster or not; Soft clustering (also: fuzzy clustering): each object belongs to each cluster to a certain degree (for example, a likelihood of belonging to the cluster) There are also finer distinctions possible, for example: Strict partitioning clustering: each object belongs to exactly one cluster

  5. Nearest-neighbor chain algorithm - Wikipedia

    en.wikipedia.org/wiki/Nearest-neighbor_chain...

    In the theory of cluster analysis, the nearest-neighbor chain algorithm is an algorithm that can speed up several methods for agglomerative hierarchical clustering.These are methods that take a collection of points as input, and create a hierarchy of clusters of points by repeatedly merging pairs of smaller clusters to form larger clusters.

  6. Model-based clustering - Wikipedia

    en.wikipedia.org/wiki/Model-based_clustering

    Several of these models correspond to well-known heuristic clustering methods. For example, k-means clustering is equivalent to estimation of the EII clustering model using the classification EM algorithm. [8] The Bayesian information criterion (BIC) can be used to choose the best clustering model as well as the number of clusters. It can also ...

  7. Hierarchical clustering of networks - Wikipedia

    en.wikipedia.org/wiki/Hierarchical_clustering_of...

    For this reason, their use in hierarchical clustering techniques is far from optimal. [1] Edge betweenness centrality has been used successfully as a weight in the Girvan–Newman algorithm. [1] This technique is similar to a divisive hierarchical clustering algorithm, except the weights are recalculated with each step.

  8. Automatic clustering algorithms - Wikipedia

    en.wikipedia.org/wiki/Automatic_Clustering...

    Therefore, most research in clustering analysis has been focused on the automation of the process. Automated selection of k in a K-means clustering algorithm, one of the most used centroid-based clustering algorithms, is still a major problem in machine learning. The most accepted solution to this problem is the elbow method.

  9. Ward's method - Wikipedia

    en.wikipedia.org/wiki/Ward's_method

    Ward's minimum variance method can be defined and implemented recursively by a Lance–Williams algorithm. The Lance–Williams algorithms are an infinite family of agglomerative hierarchical clustering algorithms which are represented by a recursive formula for updating cluster distances at each step (each time a pair of clusters is merged).