When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Mutual exclusivity - Wikipedia

    en.wikipedia.org/wiki/Mutual_exclusivity

    However, not all mutually exclusive events are collectively exhaustive. For example, the outcomes 1 and 4 of a single roll of a six-sided die are mutually exclusive (both cannot happen at the same time) but not collectively exhaustive (there are other possible outcomes; 2,3,5,6).

  3. Collectively exhaustive events - Wikipedia

    en.wikipedia.org/wiki/Collectively_exhaustive_events

    For example, events A and B are said to be collectively exhaustive if = where S is the sample space. Compare this to the concept of a set of mutually exclusive events. In such a set no more than one event can occur at a given time. (In some forms of mutual exclusion only one event can ever occur.)

  4. MECE principle - Wikipedia

    en.wikipedia.org/wiki/MECE_principle

    Examples of MECE arrangements include categorizing people by year of birth (assuming all years are known), apartments by their building number, letters by postmark, and dice rolls. A non-MECE example would be categorization by nationality, because nationalities are neither mutually exclusive (some people have dual nationality) nor collectively ...

  5. Law of total probability - Wikipedia

    en.wikipedia.org/wiki/Law_of_total_probability

    The law of total probability is [1] a theorem that states, in its discrete case, if {: =,,, …} is a finite or countably infinite set of mutually exclusive and collectively exhaustive events, then for any event () = ()

  6. Complementary event - Wikipedia

    en.wikipedia.org/wiki/Complementary_event

    The event A and its complement [not A] are mutually exclusive and exhaustive. Generally, there is only one event B such that A and B are both mutually exclusive and exhaustive; that event is the complement of A. The complement of an event A is usually denoted as A′, A c, A or A.

  7. Probability - Wikipedia

    en.wikipedia.org/wiki/Probability

    A probability is a way of assigning every event a value between zero and one, with the requirement that the event made up of all possible results (in our example, the event {1,2,3,4,5,6}) is assigned a value of one. To qualify as a probability, the assignment of values must satisfy the requirement that for any collection of mutually exclusive ...

  8. Probability theory - Wikipedia

    en.wikipedia.org/wiki/Probability_theory

    To qualify as a probability distribution, the assignment of values must satisfy the requirement that if you look at a collection of mutually exclusive events (events that contain no common results, e.g., the events {1,6}, {3}, and {2,4} are all mutually exclusive), the probability that any of these events occurs is given by the sum of the ...

  9. Probability space - Wikipedia

    en.wikipedia.org/wiki/Probability_space

    For example, the probability of the union of the mutually exclusive events and in the random experiment of one coin toss, (), is the sum of probability for and the probability for , () + (). Second, the probability of the sample space Ω {\displaystyle \Omega } must be equal to 1 (which accounts for the fact that, given an execution of the ...