When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Transport phenomena - Wikipedia

    en.wikipedia.org/wiki/Transport_phenomena

    where A is the surface area, is the temperature driving force, Q is the heat flow per unit time, and h is the heat transfer coefficient. Within heat transfer, two principal types of convection can occur: Forced convection can occur in both laminar and turbulent flow.

  3. Mass transfer coefficient - Wikipedia

    en.wikipedia.org/wiki/Mass_transfer_coefficient

    The driving force shown here as ' ' is expressed in units of moles per unit of volume, but in some cases the driving force is represented by other measures of concentration with different units. For example, the driving force may be partial pressures when dealing with mass transfer in a gas phase and thus use units of pressure.

  4. Bell–Evans–Polanyi principle - Wikipedia

    en.wikipedia.org/wiki/Bell–Evans–Polanyi...

    In physical chemistry, the Evans–Polanyi principle (also referred to as the Bell–Evans–Polanyi principle, Brønsted–Evans–Polanyi principle, or Evans–Polanyi–Semenov principle) observes that the difference in activation energy between two reactions of the same family is proportional to the difference of their enthalpy of reaction.

  5. Reversal potential - Wikipedia

    en.wikipedia.org/wiki/Reversal_potential

    An important concept related to the equilibrium potential is the driving force. Driving force is simply defined as the difference between the actual membrane potential and an ion's equilibrium potential V m − E i {\displaystyle V_{\mathrm {m} }-E_{\mathrm {i} }\ } where E i {\displaystyle E_{\mathrm {i} }\ } refers to the equilibrium ...

  6. Mass transfer - Wikipedia

    en.wikipedia.org/wiki/Mass_transfer

    The driving force for mass transfer is usually a difference in chemical potential, when it can be defined, though other thermodynamic gradients may couple to the flow of mass and drive it as well. A chemical species moves from areas of high chemical potential to areas of low chemical potential.

  7. Protein adsorption - Wikipedia

    en.wikipedia.org/wiki/Protein_adsorption

    The adsorption of larger biomolecules such as proteins is of high physiological relevance, and as such they adsorb with different mechanisms than their molecular or atomic analogs. Some of the major driving forces behind protein adsorption include: surface energy, intermolecular forces, hydrophobicity, and ionic or electrostatic interaction. By ...

  8. Fragmentation (mass spectrometry) - Wikipedia

    en.wikipedia.org/wiki/Fragmentation_(mass...

    The driving force of fragmentation is the strong tendency of the radical ion for electron pairing. Cleavage occurs when the radical and an odd electron from the bonds adjacent to the radical migrate to form a bond between the alpha carbon and either the heteroatom or the unsaturated functional group.

  9. Zimm–Bragg model - Wikipedia

    en.wikipedia.org/wiki/Zimm–Bragg_model

    In statistical mechanics, the Zimm–Bragg model is a helix-coil transition model that describes helix-coil transitions of macromolecules, usually polymer chains. Most models provide a reasonable approximation of the fractional helicity of a given polypeptide; the Zimm–Bragg model differs by incorporating the ease of propagation (self-replication) with respect to nucleation.