Search results
Results From The WOW.Com Content Network
The delta function was introduced by physicist Paul Dirac, and has since been applied routinely in physics and engineering to model point masses and instantaneous impulses. It is called the delta function because it is a continuous analogue of the Kronecker delta function, which is usually defined on a discrete domain and takes values 0 and 1.
In mathematics, Hooley's delta function (()), also called Erdős--Hooley delta-function, defines the maximum number of divisors of in [,] for all , where is the ...
The Kronecker delta has the so-called sifting property that for : = =. and if the integers are viewed as a measure space, endowed with the counting measure, then this property coincides with the defining property of the Dirac delta function () = (), and in fact Dirac's delta was named after the Kronecker delta because of this analogous property ...
Examples of the latter include the Dirac delta function and distributions defined to act by integration of test functions against certain measures on . Nonetheless, it is still always possible to reduce any arbitrary distribution down to a simpler family of related distributions that do arise via such actions of integration.
We can also say that the measure is a single atom at x; however, treating the Dirac measure as an atomic measure is not correct when we consider the sequential definition of Dirac delta, as the limit of a delta sequence [dubious – discuss]. The Dirac measures are the extreme points of the convex set of probability measures on X.
The delta potential is the potential = (), where δ(x) is the Dirac delta function. It is called a delta potential well if λ is negative, and a delta potential barrier if λ is positive. The delta has been defined to occur at the origin for simplicity; a shift in the delta function's argument does not change any of the following results.
Approximation of a unit doublet with two rectangles of width k as k goes to zero. In mathematics, the unit doublet is the derivative of the Dirac delta function.It can be used to differentiate signals in electrical engineering: [1] If u 1 is the unit doublet, then
the Kronecker delta function [20] the Feigenbaum constants [21] the force of interest in mathematical finance; the Dirac delta function [22] the receptor which enkephalins have the highest affinity for in pharmacology [23] the Skorokhod integral in Malliavin calculus, a subfield of stochastic analysis; the minimum degree of any vertex in a ...