Search results
Results From The WOW.Com Content Network
Mathematically, we can state the law of charge conservation as a continuity equation: = ˙ ˙ (). where / is the electric charge accumulation rate in a specific volume at time t, ˙ is the amount of charge flowing into the volume and ˙ is the amount of charge flowing out of the volume; both amounts are regarded as generic functions of time.
All of the conservation laws listed above are local conservation laws. A local conservation law is expressed mathematically by a continuity equation, which states that the change in the quantity in a volume is equal to the total net "flux" of the quantity through the surface of the volume. The following sections discuss continuity equations in ...
Continuous charge distribution. The volume charge density ρ is the amount of charge per unit volume (cube), surface charge density σ is amount per unit surface area (circle) with outward unit normal n̂, d is the dipole moment between two point charges, the volume density of these is the polarization density P.
The laws of physics are invariant with respect to orientation—for example, floating in outer space, there is no measurement you can do to say "which way is up"; the laws of physics are the same regardless of how you are oriented. This symmetry leads to the continuity equation for conservation of angular momentum.
The total electric charge of an isolated system remains constant regardless of changes within the system itself. This law is inherent to all processes known to physics and can be derived in a local form from gauge invariance of the wave function. The conservation of charge results in the charge-current continuity equation.
In physics a conserved current is a current, , that satisfies the continuity equation =.The continuity equation represents a conservation law, hence the name. Indeed, integrating the continuity equation over a volume , large enough to have no net currents through its surface, leads to the conservation law =, where = is the conserved quantity.
where: is the rate of change of the energy density in the volume. ∇•S is the energy flow out of the volume, given by the divergence of the Poynting vector S. J•E is the rate at which the fields do work on charges in the volume (J is the current density corresponding to the motion of charge, E is the electric field, and • is the dot product).
Electric field from positive to negative charges. Gauss's law describes the relationship between an electric field and electric charges: an electric field points away from positive charges and towards negative charges, and the net outflow of the electric field through a closed surface is proportional to the enclosed charge, including bound charge due to polarization of material.