Search results
Results From The WOW.Com Content Network
World map with the middle latitudes highlighted in red Extratropical cyclone formation areas. The middle latitudes, also called the mid-latitudes (sometimes spelled midlatitudes) or moderate latitudes, are spatial regions on either hemisphere of Earth, located between the Tropic of Cancer (latitude 23°26′09.7″) and the Arctic Circle (66°33′50.3″) in the northern hemisphere and ...
As a result, at the surface, winds can vary abruptly in direction. But the winds above the surface, where they are less disrupted by terrain, are essentially westerly. A low pressure zone at 60° latitude that moves toward the equator, or a high pressure zone at 30° latitude that moves poleward, will accelerate the Westerlies of the Ferrel cell.
In the mid-latitude westerlies, upper level troughs and ridges often alternate in a high-amplitude pattern. For a trough in the westerlies, the region just west of the trough axis is typically an area of convergent winds and descending air – and hence high pressure –, while the region just east of the trough axis is an area of fast ...
The descriptor extratropical signifies that this type of cyclone generally occurs outside the tropics and in the middle latitudes of Earth between 30° and 60° latitude. They are termed mid-latitude cyclones if they form within those latitudes, or post-tropical cyclones if a tropical cyclone has intruded into the mid latitudes.
In the mid-latitudes, westerly winds are dominant, and their strength is largely determined by the polar cyclone. In areas where winds tend to be light, the sea breeze -land breeze cycle (powered by differential solar heating and night cooling of sea and land) is the most important cause of the prevailing wind.
If the Earth were tidally locked to the Sun, solar heating would cause winds across the mid-latitudes to blow in a poleward direction, away from the subtropical ridge. . However, the Coriolis effect caused by the rotation of Earth tends to deflect poleward winds eastward from north (to the right) in the Northern Hemisphere and eastward from south (to the left) in the Southern Hemisph
The five main latitude regions of Earth's surface comprise geographical zones, [1] divided by the major circles of latitude. The differences between them relate to climate. They are as follows: The North Frigid Zone, between the North Pole at 90° N and the Arctic Circle at 66°33′50.3″ N, covers 4.12% of Earth's surface.
Atmospheric circulation diagram, showing the Hadley cell, the Ferrel cell, the Polar cell, and the various upwelling and subsidence zones between them. In meteorology, the polar front is the weather front boundary between the polar cell and the Ferrel cell around the 60° latitude, near the polar regions, in both hemispheres.