When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Limit of a function - Wikipedia

    en.wikipedia.org/wiki/Limit_of_a_function

    For such a double limit to exist, this definition requires the value of f approaches L along every possible path approaching (p, q), excluding the two lines x = p and y = q. As a result, the multiple limit is a weaker notion than the ordinary limit: if the ordinary limit exists and equals L, then the multiple limit exists and also equals L. The ...

  3. Oscillation (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Oscillation_(mathematics)

    in an essential discontinuity, oscillation measures the failure of a limit to exist. This definition is useful in descriptive set theory to study the set of discontinuities and continuous points – the continuous points are the intersection of the sets where the oscillation is less than ε (hence a G δ set ) – and gives a very quick proof ...

  4. Classification of discontinuities - Wikipedia

    en.wikipedia.org/wiki/Classification_of...

    in a jump discontinuity, the size of the jump is the oscillation (assuming that the value at the point lies between these limits of the two sides); in an essential discontinuity (a.k.a. infinite discontinuity), oscillation measures the failure of a limit to exist.

  5. List of limits - Wikipedia

    en.wikipedia.org/wiki/List_of_limits

    This is a list of limits for common functions such as elementary functions. In this article, the terms a , b and c are constants with respect to x . Limits for general functions

  6. L'Hôpital's rule - Wikipedia

    en.wikipedia.org/wiki/L'Hôpital's_rule

    This means that if |g(x)| diverges to infinity as x approaches c and both f and g satisfy the hypotheses of L'Hôpital's rule, then no additional assumption is needed about the limit of f(x): It could even be the case that the limit of f(x) does not exist. In this case, L'Hopital's theorem is actually a consequence of Cesàro–Stolz.

  7. Limit (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Limit_(mathematics)

    Limits can be difficult to compute. There exist limit expressions whose modulus of convergence is undecidable. In recursion theory, the limit lemma proves that it is possible to encode undecidable problems using limits. [14] There are several theorems or tests that indicate whether the limit exists. These are known as convergence tests.

  8. Improper integral - Wikipedia

    en.wikipedia.org/wiki/Improper_integral

    The value of this limit, should it exist, is the (C, α) sum of the integral. An integral is (C, 0) summable precisely when it exists as an improper integral. However, there are integrals which are (C, α) summable for α > 0 which fail to converge as improper integrals (in the sense of Riemann or Lebesgue).

  9. Abel's theorem - Wikipedia

    en.wikipedia.org/wiki/Abel's_theorem

    Without this restriction, the limit may fail to exist: for example, the power series > converges to at =, but is unbounded near any point of the form /, so the value at = is not the limit as tends to 1 in the whole open disk.