Search results
Results From The WOW.Com Content Network
Rotation engine of ATP synthase. Located within the thylakoid membrane and the inner mitochondrial membrane, ATP synthase consists of two regions F O and F 1. F O causes rotation of F 1 and is made of c-ring and subunits a, two b, F6. F 1 is made of α, β, γ, and δ subunits. F 1 has a water-soluble part that can hydrolyze ATP.
The energy stored in this potential is then used by ATP synthase to produce ATP. Oxidative phosphorylation in the eukaryotic mitochondrion is the best-understood example of this process. The mitochondrion is present in almost all eukaryotes, with the exception of anaerobic protozoa such as Trichomonas vaginalis that instead reduce protons to ...
F-ATPase, also known as F-Type ATPase, is an ATPase/synthase found in bacterial plasma membranes, in mitochondrial inner membranes (in oxidative phosphorylation, where it is known as Complex V), and in chloroplast thylakoid membranes.
The protons return to the mitochondrial matrix through the protein ATP synthase. The energy is used in order to rotate ATP synthase which facilitates the passage of a proton, producing ATP. A pH difference between the matrix and intermembrane space creates an electrochemical gradient by which ATP synthase can pass a proton into the matrix ...
ATP synthase is the enzyme that makes ATP by chemiosmosis. It allows protons to pass through the membrane and uses the free energy difference to convert phosphorylate adenosine diphosphate (ADP) into ATP. The ATP synthase contains two parts: CF0 (present in thylakoid membrane) and CF1 (protrudes on the outer surface of thylakoid membrane).
The F O component of ATP synthase acts as an ion channel that provides for a proton flux back into the mitochondrial matrix. It is composed of a, b and c subunits. Protons in the inter-membrane space of mitochondria first enter the ATP synthase complex through an a subunit channel. Then protons move to the c subunits. [11]
The ATP synthase complex exists within the mitochondrial membrane (F O portion) and protrudes into the matrix (F 1 portion). The energy derived as a result of the chemical gradient is then used to synthesize ATP by coupling the reaction of inorganic phosphate to ADP in the active site of the ATP synthase enzyme; the equation for this can be ...
7 ATP synthase A crista ( / ˈ k r ɪ s t ə / ; pl. : cristae ) is a fold in the inner membrane of a mitochondrion . The name is from the Latin for crest or plume , and it gives the inner membrane its characteristic wrinkled shape, providing a large amount of surface area for chemical reactions to occur on.