When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Time-invariant system - Wikipedia

    en.wikipedia.org/wiki/Time-invariant_system

    If a time-invariant system is also linear, it is the subject of linear time-invariant theory (linear time-invariant) with direct applications in NMR spectroscopy, seismology, circuits, signal processing, control theory, and other technical areas. Nonlinear time-invariant systems lack a comprehensive, governing theory.

  3. Linear time-invariant system - Wikipedia

    en.wikipedia.org/wiki/Linear_time-invariant_system

    Block diagram illustrating the superposition principle and time invariance for a deterministic continuous-time single-input single-output system. The system satisfies the superposition principle and is time-invariant if and only if y 3 (t) = a 1 y 1 (t – t 0) + a 2 y 2 (t – t 0) for all time t, for all real constants a 1, a 2, t 0 and for all inputs x 1 (t), x 2 (t). [1]

  4. Time-variant system - Wikipedia

    en.wikipedia.org/wiki/Time-variant_system

    An example of this is the aging and wear of electronic components, which happens on a scale of years, and thus does not result in any behaviour qualitatively different from that observed in a time invariant system: day-to-day, they are effectively time invariant, though year to year, the parameters may change.

  5. Autonomous system (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Autonomous_system...

    An autonomous system is a system of ordinary differential equations of the form = (()) where x takes values in n-dimensional Euclidean space; t is often interpreted as time. It is distinguished from systems of differential equations of the form = ((),) in which the law governing the evolution of the system does not depend solely on the system's ...

  6. Group delay and phase delay - Wikipedia

    en.wikipedia.org/wiki/Group_delay_and_phase_delay

    The group delay and phase delay properties of a linear time-invariant (LTI) system are functions of frequency, giving the time from when a frequency component of a time varying physical quantity—for example a voltage signal—appears at the LTI system input, to the time when a copy of that same frequency component—perhaps of a different physical phenomenon—appears at the LTI system output.

  7. Controllability Gramian - Wikipedia

    en.wikipedia.org/wiki/Controllability_Gramian

    Linear Time Invariant (LTI) Systems are those systems in which the parameters , , and are invariant with respect to time. One can observe if the LTI system is or is not controllable simply by looking at the pair ( A , B ) {\displaystyle ({\boldsymbol {A}},{\boldsymbol {B}})} .

  8. Infinite impulse response - Wikipedia

    en.wikipedia.org/wiki/Infinite_impulse_response

    Common examples of linear time-invariant systems are most electronic and digital filters. Systems with this property are known as IIR systems or IIR filters . In practice, the impulse response, even of IIR systems, usually approaches zero and can be neglected past a certain point.

  9. System analysis - Wikipedia

    en.wikipedia.org/wiki/System_analysis

    A system is linear if it has the superposition and scaling properties. A system that is not linear is non-linear. If the output of a system does not depend explicitly on time, the system is said to be time-invariant; otherwise it is time-variant [1] A system that will always produce the same output for a given input is said to be deterministic.