Search results
Results From The WOW.Com Content Network
The two examples below, written in Python, present a while loop with an inner for loop and a while loop without an inner loop. Although both have the same terminating condition for their while loops, the first example will finish faster because of the inner for loop. The variable innermax is a fraction of the maxticketno variable in the first ...
Nested functions can be used for unstructured control flow, by using the return statement for general unstructured control flow.This can be used for finer-grained control than is possible with other built-in features of the language – for example, it can allow early termination of a for loop if break is not available, or early termination of a nested for loop if a multi-level break or ...
Both Python's for and while loops support such an else clause, which is executed only if early exit of the loop has not occurred. Some languages support breaking out of nested loops; in theory circles, these are called multi-level breaks. One common use example is searching a multi-dimensional table.
Duff's device provides a compact loop unrolling by using the case keyword both inside and outside the loop. This is unusual because the contents of a case statement are traditionally thought of as a block of code nested inside the case statement, and a reader would typically expect it to end before the next case statement.
Pages in category "Articles with example Python (programming language) code" The following 200 pages are in this category, out of approximately 201 total. This list may not reflect recent changes .
In computer science, a generator is a routine that can be used to control the iteration behaviour of a loop.All generators are also iterators. [1] A generator is very similar to a function that returns an array, in that a generator has parameters, can be called, and generates a sequence of values.
Here, the list [0..] represents , x^2>3 represents the predicate, and 2*x represents the output expression.. List comprehensions give results in a defined order (unlike the members of sets); and list comprehensions may generate the members of a list in order, rather than produce the entirety of the list thus allowing, for example, the previous Haskell definition of the members of an infinite list.
Loop carried dependence graphs (LDG) gives a visual representation of all true dependencies, anti dependencies, and output dependencies that exist between different iterations in a loop. [1] Each iteration is represented with a node. It is easier to show the difference between the two graphs with a nested for loop.