Search results
Results From The WOW.Com Content Network
A simple (non-self-intersecting) quadrilateral is a rhombus if and only if it is any one of the following: [6] [7] a parallelogram in which a diagonal bisects an interior angle; a parallelogram in which at least two consecutive sides are equal in length; a parallelogram in which the diagonals are perpendicular (an orthodiagonal parallelogram)
For a cyclic orthodiagonal quadrilateral (one that can be inscribed in a circle), suppose the intersection of the diagonals divides one diagonal into segments of lengths p 1 and p 2 and divides the other diagonal into segments of lengths q 1 and q 2. Then [10] (the first equality is Proposition 11 in Archimedes' Book of Lemmas)
The area of the parallelogram is the area of the blue region, which is the interior of the parallelogram. The base × height area formula can also be derived using the figure to the right. The area K of the parallelogram to the right (the blue area) is the total area of the rectangle less the area of the two orange triangles. The area of the ...
By using the area formula of the general rhombus in terms of its diagonal lengths and : The area of the golden rhombus in terms of its diagonal length d {\displaystyle d} is: [ 6 ] A = ( φ d ) ⋅ d 2 = φ 2 d 2 = 1 + 5 4 d 2 ≈ 0.80902 d 2 . {\displaystyle A={{(\varphi d)\cdot d} \over 2}={{\varphi } \over 2}~d^{2}={{1+{\sqrt {5}}} \over 4 ...
An arbitrary quadrilateral and its diagonals. Bases of similar triangles are parallel to the blue diagonal. Ditto for the red diagonal. The base pairs form a parallelogram with half the area of the quadrilateral, A q, as the sum of the areas of the four large triangles, A l is 2 A q (each of the two pairs reconstructs the quadrilateral) while that of the small triangles, A s is a quarter of A ...
A quadrilateral is a kite if and only if any one of the following conditions is true: The four sides can be split into two pairs of adjacent equal-length sides. [7] One diagonal crosses the midpoint of the other diagonal at a right angle, forming its perpendicular bisector. [9] (In the concave case, the line through one of the diagonals bisects ...
A set of sides that can form a cyclic quadrilateral can be arranged in any of three distinct sequences each of which can form a cyclic quadrilateral of the same area in the same circumcircle (the areas being the same according to Brahmagupta's area formula). Any two of these cyclic quadrilaterals have one diagonal length in common. [17]: p. 84
Bretschneider's formula generalizes Brahmagupta's formula for the area of a cyclic quadrilateral, which in turn generalizes Heron's formula for the area of a triangle.. The trigonometric adjustment in Bretschneider's formula for non-cyclicality of the quadrilateral can be rewritten non-trigonometrically in terms of the sides and the diagonals e and f to give [2] [3]