Search results
Results From The WOW.Com Content Network
This formula defines the photoelectric effect. Not every photon which encounters an atom or ion will photoionize it. The probability of photoionization is related to the photoionization cross-section, which depends on the energy of the photon and the target being considered. For photon energies below the ionization threshold, the ...
The photoelectric effect is the emission of electrons from a material caused by electromagnetic radiation such as ultraviolet light. Electrons emitted in this manner are called photoelectrons. The phenomenon is studied in condensed matter physics, solid state, and quantum chemistry to draw inferences about the properties of atoms, molecules and ...
XPS physics - the photoelectric effect.. Because the energy of an X-ray with particular wavelength is known (for Al K α X-rays, E photon = 1486.7 eV), and because the emitted electrons' kinetic energies are measured, the electron binding energy of each of the emitted electrons can be determined by using the photoelectric effect equation,
To explain the photoelectric effect, Albert Einstein assumed heuristically in 1905 that an electromagnetic field consists of particles of energy of amount hν, where h is the Planck constant and ν is the wave frequency.
Photoelectric effect Schematic illustration of the photoemission process. Using Einstein's method, the following equations are used: energy of photon = energy needed to remove an electron + kinetic energy of the emitted electron = + where h is the Planck constant;
A photodiode is a PIN structure or p–n junction.When a photon of sufficient energy strikes the diode, it creates an electron–hole pair. This mechanism is also known as the inner photoelectric effect.
Both types of device are varieties of solar cell, in that a photoelectrochemical cell's function is to use the photoelectric effect (or, very similarly, the photovoltaic effect) to convert electromagnetic radiation (typically sunlight) either directly into electrical power, or into something which can itself be easily used to produce electrical ...
The physics behind the PES technique is an application of the photoelectric effect. The sample is exposed to a beam of UV or XUV light inducing photoelectric ionization. The energies of the emitted photoelectrons are characteristic of their original electronic states, and depend also on vibrational state and rotational level.