When.com Web Search

  1. Ad

    related to: what is a multiplicity in math calculator graph theory

Search results

  1. Results From The WOW.Com Content Network
  2. Multiplicity (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Multiplicity_(mathematics)

    The graph crosses the x-axis at roots of odd multiplicity and does not cross it at roots of even multiplicity. A non-zero polynomial function is everywhere non-negative if and only if all its roots have even multiplicity and there exists an x 0 {\displaystyle x_{0}} such that f ( x 0 ) > 0 {\displaystyle f(x_{0})>0} .

  3. Laplacian matrix - Wikipedia

    en.wikipedia.org/wiki/Laplacian_matrix

    Spectral graph theory relates properties of a graph to a spectrum, i.e., eigenvalues, and eigenvectors of matrices associated with the graph, such as its adjacency matrix or Laplacian matrix. Imbalanced weights may undesirably affect the matrix spectrum, leading to the need of normalization — a column/row scaling of the matrix entries ...

  4. Multiplicity theory - Wikipedia

    en.wikipedia.org/wiki/Multiplicity_theory

    The notion of the multiplicity of a module is a generalization of the degree of a projective variety. By Serre's intersection formula, it is linked to an intersection multiplicity in the intersection theory. The main focus of the theory is to detect and measure a singular point of an algebraic variety (cf. resolution of singularities).

  5. Multiset - Wikipedia

    en.wikipedia.org/wiki/Multiset

    In mathematics, a multiset (or bag, or mset) is a modification of the concept of a set that, unlike a set, [1] allows for multiple instances for each of its elements.The number of instances given for each element is called the multiplicity of that element in the multiset.

  6. Glossary of graph theory - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_graph_theory

    Spectral graph theory is the branch of graph theory that uses spectra to analyze graphs. See also spectral expansion. split 1. A split graph is a graph whose vertices can be partitioned into a clique and an independent set. A related class of graphs, the double split graphs, are used in the proof of the strong perfect graph theorem.

  7. Complete bipartite graph - Wikipedia

    en.wikipedia.org/wiki/Complete_bipartite_graph

    The complete bipartite graph K m,n has a vertex covering number of min{m, n} and an edge covering number of max{m, n}. The complete bipartite graph K m,n has a maximum independent set of size max{m, n}. The adjacency matrix of a complete bipartite graph K m,n has eigenvalues √ nm, − √ nm and 0; with multiplicity 1, 1 and n + m − 2 ...

  8. Algebraic connectivity - Wikipedia

    en.wikipedia.org/wiki/Algebraic_connectivity

    An example graph, with 6 vertices, diameter 3, connectivity 1, and algebraic connectivity 0.722 The algebraic connectivity (also known as Fiedler value or Fiedler eigenvalue after Miroslav Fiedler) of a graph G is the second-smallest eigenvalue (counting multiple eigenvalues separately) of the Laplacian matrix of G. [1]

  9. Multigraph - Wikipedia

    en.wikipedia.org/wiki/Multigraph

    A multigraph with multiple edges (red) and several loops (blue). Not all authors allow multigraphs to have loops. In mathematics, and more specifically in graph theory, a multigraph is a graph which is permitted to have multiple edges (also called parallel edges [1]), that is, edges that have the same end nodes.