When.com Web Search

  1. Ad

    related to: how to overcome uncertainty in physics problems and solutions examples

Search results

  1. Results From The WOW.Com Content Network
  2. Uncertainty principle - Wikipedia

    en.wikipedia.org/wiki/Uncertainty_principle

    where = is the reduced Planck constant.. The quintessentially quantum mechanical uncertainty principle comes in many forms other than position–momentum. The energy–time relationship is widely used to relate quantum state lifetime to measured energy widths but its formal derivation is fraught with confusing issues about the nature of time.

  3. Uncertainty quantification - Wikipedia

    en.wikipedia.org/wiki/Uncertainty_quantification

    There are two major types of problems in uncertainty quantification: one is the forward propagation of uncertainty (where the various sources of uncertainty are propagated through the model to predict the overall uncertainty in the system response) and the other is the inverse assessment of model uncertainty and parameter uncertainty (where the ...

  4. Quantum indeterminacy - Wikipedia

    en.wikipedia.org/wiki/Quantum_indeterminacy

    For example, in the spin 1/2 example discussed above, the system can be prepared in the state ψ by using measurement of σ 1 as a filter that retains only those particles such that σ 1 yields +1. By the von Neumann (so-called) postulates, immediately after the measurement the system is assuredly in the state ψ .

  5. Uncertainty analysis - Wikipedia

    en.wikipedia.org/wiki/Uncertainty_analysis

    In physical experiments uncertainty analysis, or experimental uncertainty assessment, deals with assessing the uncertainty in a measurement.An experiment designed to determine an effect, demonstrate a law, or estimate the numerical value of a physical variable will be affected by errors due to instrumentation, methodology, presence of confounding effects and so on.

  6. Generalized uncertainty principle - Wikipedia

    en.wikipedia.org/wiki/Generalized_uncertainty...

    The Generalized Uncertainty Principle (GUP) represents a pivotal extension of the Heisenberg Uncertainty Principle, incorporating the effects of gravitational forces to refine the limits of measurement precision within quantum mechanics. Rooted in advanced theories of quantum gravity, including string theory and loop quantum gravity, the GUP ...

  7. Stronger uncertainty relations - Wikipedia

    en.wikipedia.org/wiki/Stronger_Uncertainty_Relations

    However, the stronger uncertainty relations due to Maccone and Pati provide different uncertainty relations, based on the sum of variances that are guaranteed to be nontrivial whenever the observables are incompatible on the state of the quantum system. [4] (Earlier works on uncertainty relations formulated as the sum of variances include, e.g.,

  8. Quantum tunnelling - Wikipedia

    en.wikipedia.org/wiki/Quantum_tunnelling

    Taking these solutions for all classical turning points, a global solution can be formed that links the limiting solutions. Given the two coefficients on one side of a classical turning point, the two coefficients on the other side of a classical turning point can be determined by using this local solution to connect them.

  9. Experimental uncertainty analysis - Wikipedia

    en.wikipedia.org/wiki/Experimental_uncertainty...

    4. The solution is to expand the function z in a second-order Taylor series; the expansion is done around the mean values of the several variables x. (Usually the expansion is done to first order; the second-order terms are needed to find the bias in the mean. Those second-order terms are usually dropped when finding the variance; see below). 5.