Search results
Results From The WOW.Com Content Network
There are two major types of problems in uncertainty quantification: one is the forward propagation of uncertainty (where the various sources of uncertainty are propagated through the model to predict the overall uncertainty in the system response) and the other is the inverse assessment of model uncertainty and parameter uncertainty (where the ...
The uncertainty principle, also known as Heisenberg's indeterminacy principle, is a fundamental concept in quantum mechanics. It states that there is a limit to the precision with which certain pairs of physical properties, such as position and momentum , can be simultaneously known.
In physical experiments uncertainty analysis, or experimental uncertainty assessment, deals with assessing the uncertainty in a measurement.An experiment designed to determine an effect, demonstrate a law, or estimate the numerical value of a physical variable will be affected by errors due to instrumentation, methodology, presence of confounding effects and so on.
The Generalized Uncertainty Principle (GUP) represents a pivotal extension of the Heisenberg Uncertainty Principle, incorporating the effects of gravitational forces to refine the limits of measurement precision within quantum mechanics. Rooted in advanced theories of quantum gravity, including string theory and loop quantum gravity, the GUP ...
3D visualization of quantum fluctuations of the quantum chromodynamics (QCD) vacuum [1]. In quantum physics, a quantum fluctuation (also known as a vacuum state fluctuation or vacuum fluctuation) is the temporary random change in the amount of energy in a point in space, [2] as prescribed by Werner Heisenberg's uncertainty principle.
For example, an experimental uncertainty analysis of an undergraduate physics lab experiment in which a pendulum can estimate the value of the local gravitational acceleration constant g. The relevant equation [1] for an idealized simple pendulum is, approximately,
However, the stronger uncertainty relations due to Maccone and Pati provide different uncertainty relations, based on the sum of variances that are guaranteed to be nontrivial whenever the observables are incompatible on the state of the quantum system. [4] (Earlier works on uncertainty relations formulated as the sum of variances include, e.g.,
Robust solution is defined as a solution which has "both feasibility robustness and optimality robustness; Feasibility robustness means that the solution should remain feasible for (almost) all possible values of uncertain parameters and flexibility degrees of constraints and optimality robustness means that the value of objective function for the solution should remain close to optimal value ...