Search results
Results From The WOW.Com Content Network
The simplest and most ubiquitous example of a point process is the Poisson point process, which is a spatial generalisation of the Poisson process. A Poisson (counting) process on the line can be characterised by two properties : the number of points (or events) in disjoint intervals are independent and have a Poisson distribution. A Poisson ...
The vanishing point theorem is the principal theorem in the science of perspective. It says that the image in a picture plane π of a line L in space, not parallel to the picture, is determined by its intersection with π and its vanishing point. Some authors have used the phrase, "the image of a line includes its vanishing point".
The thinning operation entails using some predefined rule to remove points from a point process to form a new point process .These thinning rules may be deterministic, that is, not random, which is the case for one of the simplest rules known as -thinning: [1] each point of is independently removed (or kept) with some probability (or ).
A simple point process is a special type of point process in probability theory. In simple point processes, every point is assigned the weight one. In simple point processes, every point is assigned the weight one.
In probability and statistics, a factorial moment measure is a mathematical quantity, function or, more precisely, measure that is defined in relation to mathematical objects known as point processes, which are types of stochastic processes often used as mathematical models of physical phenomena representable as randomly positioned points in time, space or both.
A point process is often denoted by a single letter, [1] [7] [8] for example , and if the point process is considered as a random set, then the corresponding notation: [1], is used to denote that a random point is an element of (or belongs to) the point process . The theory of random sets can be applied to point processes owing to this ...
Point Processes is a book on the mathematics of point processes, randomly located sets of points on the real line or in other geometric spaces. It was written by David Cox and Valerie Isham , and published in 1980 by Chapman & Hall in their Monographs on Applied Probability and Statistics book series.
A theory of art is intended to contrast with a definition of art. Traditionally, definitions are composed of necessary and sufficient conditions, and a single counterexample overthrows such a definition. Theorizing about art, on the other hand, is analogous to a theory of a natural phenomenon like gravity.