Search results
Results From The WOW.Com Content Network
The standard molar entropy at pressure = is usually given the symbol S°, and has units of joules per mole per kelvin (J⋅mol −1 ⋅K −1). Unlike standard enthalpies of formation , the value of S° is absolute.
Absolute entropy of strontium. The solid line refers to the entropy of strontium in its normal standard state at 1 atm pressure. The dashed line refers to the entropy of strontium vapor in a non-physical state. The standard entropy change for the formation of a compound from the elements, or for any standard reaction is designated ΔS° form or ...
Unlike many other functions of state, entropy cannot be directly observed but must be calculated. Absolute standard molar entropy of a substance can be calculated from the measured temperature dependence of its heat capacity. The molar entropy of ions is obtained as a difference in entropy from a reference state defined as zero entropy.
In simple cases it is possible to get analytical expressions for the entropy. In the case of an ideal gas, the heat capacity is constant and the ideal gas law PV = nRT gives that α V V = V/T = nR/p, with n the number of moles and R the molar ideal-gas constant. So, the molar entropy of an ideal gas is given by
The standard state of a material (pure substance, mixture or solution) is a reference point used to calculate its properties under different conditions.A degree sign (°) or a superscript Plimsoll symbol (⦵) is used to designate a thermodynamic quantity in the standard state, such as change in enthalpy (ΔH°), change in entropy (ΔS°), or change in Gibbs free energy (ΔG°).
The term Boltzmann entropy is also sometimes used to indicate entropies calculated based on the approximation that the overall probability can be factored into an identical separate term for each particle—i.e., assuming each particle has an identical independent probability distribution, and ignoring interactions and correlations between the ...
The Sackur–Tetrode equation is an expression for the entropy of a monatomic ideal gas. [1]It is named for Hugo Martin Tetrode [2] (1895–1931) and Otto Sackur [3] (1880–1914), who developed it independently as a solution of Boltzmann's gas statistics and entropy equations, at about the same time in 1912.
Each linear fit has a different slope and intercept, which indicates different changes in enthalpy and entropy for each distinct mechanisms. The Van 't Hoff plot can be used to find the enthalpy and entropy change for each mechanism and the favored mechanism under different temperatures.