Search results
Results From The WOW.Com Content Network
In Euclidean geometry, linear separability is a property of two sets of points. This is most easily visualized in two dimensions (the Euclidean plane ) by thinking of one set of points as being colored blue and the other set of points as being colored red.
Any topological space that is itself finite or countably infinite is separable, for the whole space is a countable dense subset of itself. An important example of an uncountable separable space is the real line, in which the rational numbers form a countable dense subset.
Kirchberger's theorem is a theorem in discrete geometry, on linear separability.The two-dimensional version of the theorem states that, if a finite set of red and blue points in the Euclidean plane has the property that, for every four points, there exists a line separating the red and blue points within those four, then there exists a single line separating all the red points from all the ...
Linear separability, a geometric property of a pair of sets of points in Euclidean geometry Recursively inseparable sets , in computability theory, pairs of sets of natural numbers that cannot be "separated" with a recursive set
Linear separability is testable in time ((/), (), ()), where is the number of data points, and is the dimension of each point. [ 35 ] If the training set is linearly separable, then the perceptron is guaranteed to converge after making finitely many mistakes. [ 36 ]
In mathematics, and more specifically in linear algebra, a linear subspace or vector subspace [1] [note 1] is a vector space that is a subset of some larger vector space. A linear subspace is usually simply called a subspace when the context serves to distinguish it from other types of subspaces .
Separability is a property of a stochastic process based on its index set in relation to the probability measure. The property is assumed so that functionals of stochastic processes or random fields with uncountable index sets can form random variables.
Separability being important for applications, functional analysis of Hilbert spaces consequently mostly deals with this space. One of the open problems in functional analysis is to prove that every bounded linear operator on a Hilbert space has a proper invariant subspace .