When.com Web Search

  1. Ads

    related to: linear algebra dependent versus independent

Search results

  1. Results From The WOW.Com Content Network
  2. Linear independence - Wikipedia

    en.wikipedia.org/wiki/Linear_independence

    A set of vectors is said to be affinely dependent if at least one of the vectors in the set can be defined as an affine combination of the others. Otherwise, the set is called affinely independent. Any affine combination is a linear combination; therefore every affinely dependent set is linearly dependent.

  3. Independent equation - Wikipedia

    en.wikipedia.org/wiki/Independent_equation

    The concepts of dependence and independence of systems are partially generalized in numerical linear algebra by the condition number, which (roughly) measures how close a system of equations is to being dependent (a condition number of infinity is a dependent system, and a system of orthogonal equations is maximally independent and has a ...

  4. Dependent and independent variables - Wikipedia

    en.wikipedia.org/wiki/Dependent_and_independent...

    A variable is considered dependent if it depends on an independent variable. Dependent variables are studied under the supposition or demand that they depend, by some law or rule (e.g., by a mathematical function), on the values of other variables. Independent variables, in turn, are not seen as depending on any other variable in the scope of ...

  5. Algebraic independence - Wikipedia

    en.wikipedia.org/wiki/Algebraic_independence

    Many finite matroids may be represented by a matrix over a field , in which the matroid elements correspond to matrix columns, and a set of elements is independent if the corresponding set of columns is linearly independent. Every matroid with a linear representation of this type may also be represented as an algebraic matroid, by choosing an ...

  6. Consistent and inconsistent equations - Wikipedia

    en.wikipedia.org/wiki/Consistent_and...

    The system + =, + = has exactly one solution: x = 1, y = 2 The nonlinear system + =, + = has the two solutions (x, y) = (1, 0) and (x, y) = (0, 1), while + + =, + + =, + + = has an infinite number of solutions because the third equation is the first equation plus twice the second one and hence contains no independent information; thus any value of z can be chosen and values of x and y can be ...

  7. Wronskian - Wikipedia

    en.wikipedia.org/wiki/Wronskian

    If the functions f i are linearly dependent, then so are the columns of the Wrońskian (since differentiation is a linear operation), and the Wrońskian vanishes. Thus, one may show that a set of differentiable functions is linearly independent on an interval by showing that their Wrońskian does not vanish identically. It may, however, vanish ...

  1. Ad

    related to: linear algebra dependent versus independent